
C-system of a module over a monad on sets1

Vladimir Voevodsky2,3

September 2015

Abstract

This is the second paper in a series started in [?] which aims to provide mathematical
descriptions of objects and constructions related to the semantical theory of dependent type
systems.

We construct for any pair (R,LM), where R is a monad on sets and LM is a left module over
R, a C-system (“contextual category”) CC(R,LM) and describe, using the results of [?] a class
of sub-quotients of CC(R,LM) in terms of objects directly constructed from R and LM . In the
special case of the monads of expressions associated with binding signatures this construction
gives, for the first time, a systematic and mathematically rigorous way of constructing the term
C-system of a type theory from the raw syntax of the theory and the set of judgements of the
four Martin-Löf kinds.

Contents

1 Introduction . 1

2 Monads and strict algebraic theories . 7

3 The C-system C(R) . 13

4 The C-system CC(R,LM). 26

5 C-subsystems of CC(R,LM). 38

6 Regular sub-quotients of CC(R,LM). 41

7 Operations σ and σ̃. 47

1 Introduction

The first few steps in all approaches to the semantics of dependent type theories remain insufficiently
understood. The constructions which have been worked out in detail in the case of a few particular
type systems by dedicated authors are being extended to the wide variety of type systems under
consideration today by analogy. This is not acceptable in mathematics. Instead we should be able
to obtain the required results for new type systems by specialization of general theorems formulated
and proved for abstract objects the instances of which combine together to produce a given type
system.

An approach that follows this general philosophy was outlined in [?]. In this approach the con-
nection between the type theories, which belong to the concrete world of logic and programming,
and abstract mathematical concepts such as sets or homotopy types is constructed through the
intermediary of C-systems.

12000 Mathematical Subject Classification: 18D99, 08C99, 03B15 03F50,
2School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mail: vladimir@ias.edu
3Work on this paper was supported by NSF grant 1100938.

1

C-systems were introduced in [?] (see also [?]) under the name “contextual categories”. A modified
axiomatics of C-systems and the construction of new C-systems as sub-objects and regular quotients
of the existing ones in a way convenient for use in type-theoretic applications are considered in [?].

In the approach of [?], in order to provide a mathematical representation (semantics) for a type
theory one constructs two C-systems. One C-system is constructed from the formulas of the type
theory using as an initial step the construction of the present paper. The second C-system is
constructed from the category of abstract mathematical objects using the results of [?]. Both C-
systems are then equipped with additional operations corresponding to the “inference rules” of the
type theory.

The main component of this approach is the expected result that for a particular class of the infer-
ence rules the concrete C-systems built using the constructions of the present paper and equipped
with operations corresponding to these inference rules are initial objects in the category of C-
systems with the corresponding operations. This is known as the Initiality Conjecture. In the case
of the pure Calculus of Constructions this conjecture was proved in 1988 by Thomas Streicher [?].
The problem of finding an appropriate formulation of the general version of the conjecture and of
proving this general version will be the subject of the future work.

For such inference rules, then, there are unique homomorphisms from the concrete C-systems to
the abstract C-systems that are compatible with the corresponding systems of operations. Since
objects and morphisms of concrete C-systems are built from formulas of the type theory and objects
and morphisms of abstract C-systems are built from mathematical objects such as sets or homotopy
types and the corresponding functions, these homomorphisms provide a mathematical meaning to
formulas of type theory.

The existence of such homomorphisms in the particular case of the “standard univalent models”
of Martin-Löf type theories and of the Calculus of Inductive Constructions (CIC) provides the
only known justification for the use of the proof assistants such as Coq for the formalization of
mathematics in the univalent style (see [?], [?]).

It is important to distinguish the concepts of a model of a type theory and the concept of a
representation of the same type theory. A model of type theory can be defined as a C-system that
is equipped with the systems of operations corresponding to the inference rules of the type theory.
A (categorical) representation of a type theory with values in a given category C is a functor from
the category underlying the syntactic C-system of the type theory to C.

Only if we know that the initiality result holds for a given type theory can we claim that any its
model defines a representation by taking the composition of the canonical homomorphism of the
C-systems with the functor such as the functor int of [?]. A similar problem also arises in the
predicate logic but there, since one considers only one fixed system of syntax and inference rules,
it can and had been solved once without the development of a general theory.

A construction of a model for the version of the Martin-Löf type theory that is used in the UniMath
library ([?],[?]) was sketched in [?]. At the time when that paper was written it was unfortunately
assumed that a proof of the initiality result can be found in the existing body of work on type
theory which is reflected in [?, Theorem 1.2.9] (cf. also [?, Example 1.2.3] that claims as obvious
everything that is done in both the present paper and in [?]). Since then it became clear that this
is not the case and that a mathematical theory leading to the initiality theorem and providing a
proof of such a theorem is lacking and needs to be developed.

As the criteria for what constitutes an acceptable proof were becoming more clear as a result of

2

continuing work on formalization, it also became clear that more detailed and general proofs need
to be given to many of the theorems of [?] that are related to the model itself. For the two of the
several main groups of inference rules of current type theories it is done in [?] and [?]. Other groups
of inference rules will be considered in further papers of the series.

This paper may be considered to be an analog of [?] for the concrete side of the theory in the
sense that it provides a very general construction the particular cases of which lead to the concrete
(syntactic) C-systems of type theories.

The details how to obtain these particular cases of the constructions of this paper are not addressed
here. The reason for this is that the proper way of describing the construction of the C-system of a
type theory requires a mathematical approach to the notion of a system of inference rules. This is
a highly non-trivial problem that will be addressed in one of the forthcoming papers of this series
after which a complete path from raw syntax, through the inference rules and then through the
four kinds of derivable sentences to a C-system with a system of operations corresponding to the
inference rules will be presented in a mathematically acceptable form.

Some idea of how the present constructions are used in the case of syntactic C-systems can be
obtained from the considerations of [?] and [?] that describe how obtain a monad RΣ or a clone
(equivalent to our strict algebraic theory) from a binding signature Σ. To any such signature Σ one
associates a class of expressions with bindings and RΣ({x1, . . . , xn}) is the set of such expressions
with free variables from the set {x1, . . . , xn} modulo α-equivalence. The result of the present paper
are then applied to the pair R = RΣ, LM = RΣ where RΣ is considered as a left module over itself.

The more general case when LM is not equal to R arises when one starts to distinguish “type ex-
pressions” from “object expressions”. The rules of type theories require the possibility to substitute
an object expression instead of a variable both in a type expression and in an object expression but
do not require to substitute a type expression instead of a variable either in a type or in an object
expression. In type theories of proof assistants such as Coq the user may be under the impression
that the substitution of type expressions instead of variables occurs (as in substituting unit for
T in iscontr(T) in the UniMath to obtain iscont(unit), cf. [?]) this is however due to a “silent”
map from object expressions to type expressions that is used in these theories. What actually
happens in these substitutions is that an object expression whose type is a universe is substituted
instead of a variable in some situations and the same object expression is mapped to the set of
type expressions and used as a type expression in others. In our constructions this corresponds to
LM = R - an object expression that is an element of R(X) for some set of variables X is considered
as an element of the set of type expressions LM(X) using the identity map defined by this equality
(more generally one may observe the same illusion when LM ⊂ R).

The question of whether to keep this map silent or to give it a name (usually El) is know in
type theory as the difference between the type theories with “Russell universes” (silent map) and
“Tarski universes” (explicit map) which is at the center of some of the current controversies about
the universe management in proof assistants. It is also the subject of a discussion in the last,
unfinished, chapter in [?].

For the purposes of the present paper we fortunately don’t need to make a choice between the two
approaches since the formalism that we develop is applicable to both. It is however clear from the
constructions that the separation between R and LM is a very natural possibility that directly
generalizes the case of LM ⊂ R and creates new examples (e.g. Example ??).

As was shown in [?] the monad that one associates to a binding signature can be characterized as
being an initial object in the category of monads equipped with “left-linear” operations correspond-

3

ing to the operations of the signature. This provides an abstract mathematical characterization
of the concrete objects - expressions modulo α-equivalence or, equivalently, expressions with De
Brujin indexes.

If R = (R, η, µ) is a monad on a category C (see Definition ??) then there is defined the Kleisli
category CR of R whose objects are the same as objects of C and morphisms from X to Y are
defined as morphisms from X to R(Y) in C. The identity morphisms in CR are given by the η
operation of R and the composition by the composition in C and the µ operation of R.

A left R-module LM over R with values in a category D (see Definition ??) defines a functor
LMR : CR → D and this function from left R-modules to functors from the Kleisli category is an
equivalence (see ??).

An important case is the left R-module corresponding to R itself which we will also denote by R.

Monads on the category of sets and left modules over such monads have a number of special ????

Of a particular interest is the case of “syntactic” pairs (R,LM) where for X = {x1, . . . , xn}, R(X)
and LM(X) are the sets of expressions of some kind with free variables from {x1, . . . , xn} modulo
an equivalence relation such as α-equivalence. The difference between R and LM is in this case
expressed by the fact that one can substitute elements from R(X) for variables both in R(Y) and
LM(Y) but elements of LM(X) can not be substituted for variables in either.

The simplest class of syntactic pairs, where LM = R, arises from binding signatures (see [?, p.228]).

An important remark needs to be made here. While monads provide a very convenient way of
expressing syntax with bindings in terms familiar to mathematicians the approach based on monads
is equivalent to an earlier one pioneered in [?]. For two sets X and Y let Fun(X,Y) be the set of
functions from X to Y . In that earlier approach one considers the category F such that Ob(F) = N
and

Mor(F) = qm,nFun(stn(m), stn(n))

where stn(i) = {0, . . . , i − 1} is the “standard” set with i elements, and functors Funct(F, Sets)
from F to Sets (the authors call these functors “presheaves” considering them as presheaves on F op)
. This category of functors is equivalent4 to the category of finitary (co-continuous) functors from
Sets to Sets. In particular, there is a monoidal structure (•, V) on Funct(F, Sets) corresponding
to the composition of functors under this equivalence (cf. [?, Sec. 3]) and finitary monads can be
considered as monoids in Funct(F, Sets) with respect to this monoidal structure.

Using this equivalence of concepts (detailed in []) the constructions and results of [?] and [?] can be
viewed together as describing different aspects of a fundamental connection between the concrete
world of syntax and the abstract world of categorical mathematics.

After this long detour let me clarify that the results and constructions of the present paper do
not depend on either [?] or [?], except for the definition of a left module over a monad in [?] and
examples. The connection to [?] and [?] will become important only in future papers where we will
consider the abstract concept of a system of inference rules and where binding signatures and the
corresponding syntactic monads will become essential.

4In the set-theoretic mathematics this equivalence can not be defined without axiom of choice. The problem lies in
the fact that the obvious functor from F to the category of finite sets, while it is fully faithful and essentially surjective,
does not have a constructive inverse. In the univalent foundations, while one still can not construct an inverse to the
functor from F to finite sets, one can construct an inverse to the corresponding functor from Funct(FSets, Sets) to
Funct(F, Sets) using the fact that Sets is a (univalent) category. Cf. [?] and [?, RezkCompletion library].

4

In the present paper, after some general comments about monads on Sets and their modules, we
construct for any such monad R and a left module LM over R a C-system (contextual category)
CC(R,LM). We start with a construction of a category C(R) such that Ob(C(R)) = N is the set
of natural numbers whose elements we will denote as m̂, n̂ etc. and

Mor(C(R)) = qm̂,n̂HomSetsR(stn(n), stn(m))

and the identity and composition is defined such as to make the mapping n̂ 7→ stn(n) to extend
to a fully faithful functor Φ from C(R)op to the Kleisli category SetsR of R. We may sometimes
use this functor as a “coercion”, in the terminology of proof assistant Coq, i.e., to write n̂ instead
of stn(n) and f instead of Φ(f). We will also use the function LM 7→ LMR from left modules to
functors on the Kleisli category as a coercion. In agreement with this convention we may write LM
for the presheaf of sets on C(R) given by n̂ 7→ LM(n).

We describe, using the results of [?], all the C-subsystems of CC(R,LM) in terms of objects directly
associated with R and LM .

We then define two additional operations σ and σ̃ on CC(R,LM) and describe the regular con-
gruence relations (see [?]) on C-subsystems of CC(R,LM) which are compatible in a certain sense
with σ and σ̃.

Such regular congruence relations correspond, in the particular cases of syntactic monads and C-
subsystems of CC(R,LM) generated by systems of inference rules, to the relations that can be
described by the two kinds of equality judgements.

More precisely, suppose that we are given a type theory that is formulated in terms of the four
kinds of judgements originally introduced by Per Martin-Löf in [?, p.161]5:

(x0 : T0, . . . , xn−1 : Tn−1)T type

(x0 : T0, . . . , xn−1 : Tn−1) t : T

(x0 : T0, . . . , xn−1 : Tn−1)T = T ′

(x0 : T0, . . . , xn−1 : Tn−1) t = t′ : T

to which one adds the judgement

(x0 : T0, . . . , xn−1 : Tn−1) ok

asserting that (x0 : T0, . . . , xn−1 : Tn−1) is a valid context of variable declarations.

Since we are only interested in the α-equivalence classes of judgements we may assume that the
variables declared in the context are taken from the set of natural numbers such that the first
declared variable is 0, the second is 1 etc. Then, the set of judgements of the form

(0 : T0, . . . , n− 1 : Tn−1)T type

can be identified with the set of judgements of the form

(0 : T0, . . . , n− 1 : Tn−1, n : T) ok

5We are not using the notation based on B that became widespread in the modern literature on type theory since
it conflicts with other uses of the turnstile symbol in logic.

5

With this identification the derivable judgements of the type theory whose raw syntax for object
expressions is given by a monad R and raw syntax for type expressions by a left R-module LM ,
can be described as four subsets B̃, B,Beq and B̃eq where

B̃ ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)

B ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)×R(stn(n))× LM(n)

Beq ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)× LM(n)2

B̃eq ⊂
∐
n∈N

LM(0)× . . .× LM(n− 1)×R(stn(n))2 × LM(n)

The sets on the right hand side of the first two of these inclusions are in the bijective correspondences
with the sets Ob(CC(R,LM)) and Õb(CC(R,LM)). It was shown in [?, Proposition 4.3] that for

any C-system CC, pairs (B, B̃) where B ⊂ Ob(CC) and B̃ ⊂ Õb(CC) that satisfy certain conditions
are in a bijective correspondence with C-subsystems of CC. In Proposition 5.3 we give a direct
reformulation of these conditions in the case of C-systems of the form CC(R,LM) in terms of
subsets B̃ and B and in Remark 5.4 we show how these conditions look like in the notation of type
theory.

We then continue our analysis to provide a mathematical meaning to the subsets Beq and B̃eq as
well. In order to obtain a bijection of Proposition 7.6 between pairs of such subsets that satisfy
certain properties and objects that have meaning for general C-systems we introduce operations σ
and σ̃.

Proposition 6.3 and subsequent lemmas culminating in Proposition 7.6 form what is probably
the most important part of the paper. They provide, for the first time, a rigorous mathematical
analysis of the conditions that the derivable definitional equality judgements of a type system
have to satisfy in order to define well-behaved equivalence relation on the sets such as the sets of
morphisms (context substitutions) of a type theory.

While proving conditions of Proposition 6.3 in the case when B̃, B, Beq and B̃eq are the sets of
derivable judgements of a particular type system is something that must be done in order to apply
the results of the present paper to this type system, proving these conditions is much less difficult
than giving a direct construction of a C-system starting from the syntax and the inference rules.

Providing this explicit set of conditions and proving that they are necessary and sufficient in order
to associate a C-system and, therefore, any of the other semantic objects such as a category with
families, to a particular type system may be considered to be the main result of this paper.

The paper is written in the formalization-ready style with the intent to produce a UniMath for-
malization of its results in the near future.

We also consider it to be important to formalize the results of this paper in Zermelo-Fraenkel
theory. Indeed, since it forms a part of the theory on which the relative consistency of the UniMath
language with respect to the set theory is based, it has to be formally verified in a theory that
is weaker than UniMath or, better, that is weaker than both UniMath and the Zermelo-Fraenkel

6

theory. However, the main choices that we had to make were made with the intent to first formalize
this paper in the UniMath.

For morphisms f : X → Y and g : Y → Z we denote their composition as f ◦ g. For functors
F : C → C′, G : C′ → C′′ we use the standard notation G ◦ F for their composition.

Following the notation of the proof assistant Coq we let unit denote the distinguished one point
set or type and tt the only point of unit.

This is one the papers extending the material which I started to work on in [?]. I would like
to thank the Institute Henri Poincare in Paris and the organizers of the “Proofs” trimester for
their hospitality during the preparation of this paper. The work on this paper was facilitated by
discussions with Richard Garner and Egbert Rijke.

2 Monads and strict algebraic theories

Let U be a Grothendieck universe. Let R = (R, η, µ) be a monad on the category of sets (cf.
[?][p. 133]) in U . We will be interested not in R itself but in what we call a strict algebraic theory
defined by R. A category-minded mathematician would say that strict algebraic theories are “the
same as” finitary monads (monads that preserve filtered colimits). The precise statement is that
if one equips the sets of strict algebraic theories in U and monads on sets in U with the “natural”
structures of categories then there exists a functor from the category of monads to the category of
strict algebraic theories that is an equivalence between the full subcategory of finitary monads in
the former category and the latter category6.

We do not provide detailed constructions of category structures on the set of strict algebraic theories
in U and the set of monads in U or of an equivalence structure on the function between the sets of
objects that we construct since they are not required for the main results of the paper.

The strict algebraic theories are also “the same as” the Lawvere theories with the natural numbers
as the set of objects of the underlying category. In this case the “sameness” is created by a function
from the set of strict algebraic theories over U to the set of Lawvere algebraic theories over U that
is an injection of sets and an equivalence of the corresponding categories. Since it is an injection
whose image consists of objects for which a certain bijection is the identity we call our objects
“strict” algebraic theories. We again provide a construction of the function but do not prove that
it has an equivalence structure.

Finally, strict algebraic theories are the “same as” clones of [?, Section 3]. This time the sameness is
created by a function that is actually a bijection for any U . The equivalence of clones with Lawvere
theories and finitary monads is explicitly stated in [?, Section 3] which is making the statements of
this section less than truly new. The reason why this section had to be written and included into
the paper is that all of these statements were stated by the previous authors without any proofs.

For two sets X and Y we let Fun(X,Y) denote the set of functions from X to Y . For n ∈ N we
let stn(n) denote the “standard” set of n elements {0, . . . , n− 1}.

Definition 2.1 [2015.08.17.def1] A strict algebraic theory is a collection of data of the following

6One can make this statement independent from the choice of the category structures by saying that there exists
an equivalence between the natural (now without quotes) groupoids of finitary monads and strict algebraic theories
and their respective isomorphisms.

7

form

1. a function R : N→ Sets,

2. for each n a function ηn ∈ Fun(stn(n), R(n)),

3. for each f ∈ Fun(stn(m), R(n)) a function bind(f) ∈ Fun(R(m), R(n)),

such that the following conditions hold:

1. for all n, bind(ηn) = IdR(n),

2. for all f ∈ Fun(stn(m), stn(n)), ηm ◦ bind(f) = f ,

3. for all f ∈ Fun(stn(k), R(m)), g ∈ Fun(stn(m), R(n)), bind(f ◦bind(g)) = bind(f)◦bind(g).

Problem 2.2 [2015.10.14] To construct a function Mtoalg from monads on sets to strict alge-
braic theories.

Construction 2.3 For a monad (R, η, µ) we define the corresponding strict algebraic theory
(R, η, bind) as follows:

1. R(n) = R(stn(n)),

2. ηn = ηstn(n),

3. for f : stn(m)→ R(n) we set bind(f) = R(f) ◦ µstn(n).

We leave the verification of the axioms of a strict algebraic theory to the reader.

Remark 2.4 [2015.11.18.rem1] A reader who is only interested in the construction of a C-system
from a pair (R,) may skip the rest of this section.

Remark 2.5 In classical mathematics the function that we have constructed defines an equivalence
between the type of finitary monads and the type of strict algebraic theories. A monad (R, η, µ) is
called finitary if for any set X the function

colimA∈Fin(X)R(A)→ R(X)

where Fin(X) is the category (partially ordered set) of finite subsets of X, is a bijection. It seems
to be constructively provable that a function similar to the one that we have constructed that maps
finitary monads to the collections of data of the form

1. for any finite set A, a set R(A),

2. for any A a function ηA ∈ Fun(A,R(A)),

3. for any f ∈ Fun(A,R(B)) a function bind(f) ∈ Fun(R(A), R(B)),

such that the following conditions hold:

8

1. for all A, bind(ηA) = IdR(A),

2. for all f ∈ Fun(A,B), ηA ◦ bind(f) = f ,

3. for all f ∈ Fun(A,B), g ∈ Fun(B,R(C)), bind(f ◦ bind(g)) = bind(f) ◦ bind(g).

is an equivalence. In UniMath it should also be provable that the obvious function from the type
of pre-theories to the type of structures that are based on functions from all finite sets to sets are
is an equivalence. This requires the univalence axiom and should be a corollary of the fact that
the category of functor from a pre-category to a category is equivalent to the category of functors
from its Rezk completion to the same category (see [?]. For us this is not important since we only
need the function Mtoalg that is described above.

In this paper we will consistently use the concept of a strict algebraic theory instead of the concept
of a finitary monad.

Let us introduce the following notation:

F (m,n) = Fun(stn(m), stn(n))

and, for a strict algebraic theory R,

R(m,n) = Fun(stn(m), R(n))

Let R = (R, η, bind) be a strict algebraic theory. For each pair m,n ∈ N define a function

φR : F (m,n)→ R(m,n)

by the formula
φR(f) = f ◦ ηm

For each l,m, n and f ∈ R(l,m), g ∈ R(m,n) define f ◦̂g ∈ R(l, n) by the formula

[2015.08.26.eq8]f ◦̂g = f ◦ bind(g) (1)

Lemma 2.6 [2015.08.18.l1] Let R = (R, η, bind) be a strict algebraic theory. Then one has:

1. for any k, l,m, n and f ∈ R(k, l), g ∈ R(l,m), h ∈ R(m,n) one has

(f ◦̂g)◦̂h = f ◦̂(g◦̂h)

2. for any f ∈ R(m,n) one has
f ◦̂ηn = f

ηm◦̂f = f

3. for any f ∈ F (l,m), g ∈ R(m,n) one has

φR(f)◦̂g = f ◦ g

9

4. for any f ∈ F (l,m), g ∈ F (m,n) one has

φR(f)◦̂φR(g) = φR(f ◦ g)

Proof:

1. We have

(f ◦̂g)◦̂h = (f ◦ bind(g)) ◦ bind(h) = f ◦ (bind(g) ◦ bind(h)) = f ◦ bind(g ◦ bind(h)) = f ◦̂(g◦̂h)

2. We have
f ◦̂ηn = f ◦ bind(ηn) = f ◦ IdR(n) = f

ηm◦̂f = ηm ◦ bind(f) = f

3. We have

φR(f)◦̂g = φR(f) ◦ bind(g) = f ◦ ηm ◦ bind(g) = f ◦ (ηm ◦ bind(g)) = f ◦ g

4. We have
φR(f)◦̂φR(g) = f ◦ φR(g) = f ◦ g ◦ ηn = (f ◦ g) ◦ ηn = φR(f ◦ g)

We are going to use the functions φR as coercions in the terminology of the proof assistant Coq,
i.e. when an element f of F (m,n) occurs in a position where an element of R(m,n) should be it
is assumed that f has to be replaced by φR(f) before the computation can occur. We will also
use bind as a coercion so that when an element g of R(m,n) occurs in a position where a function
from R(m) to R(n) is expected it has to be replaced by bind(g) before the computation can occur.
In practice, since many of our lemmas assert equalities between expressions where these coercions
are not inserted, we will be using expressions without coercions inserted or with coercions only
partially inserted in our computations but all the computations and proofs would remain valid if
the coercions were fully inserted.

Remark 2.7 [2015.08.22.rem2] We could also use the functions ηn as coercions. This however
would lead to an ambiguity of the following form. For f ∈ R(m,n) and i ∈ stn(m) we could read
f(i) both directly as the result of application of f ∈ Fun(stn(m), R(n)) to i and as bind(f)(ηm(i)).
While the corresponding elements in R(n) are equal they are equal because of the equality ηm ◦
bind(f) = f from Definition 2.1. In the UniMath and other similar formalizations this equality is
not a substitutional equality but only a transportational one and having the same expression to
denote two objects that are not substitutionally equal is an ambiguity. See also Remark 2.10 below.

Since we will have to deal with elements of the sets of functions R(m,n) = R(stn(n))stn(m) and
of similar sets such as the sets Obn(CC(R,LM)) introduced later we need to choose some way to
represent them. For the purpose of the present paper we will write such elements as sequences,
i.e., to denote the function, which in the notation of λ-calculus is written as λ i : stn(n), fi, we will
write (f0, . . . , fn−1).

10

Lemma 2.8 [2015.08.26.l3] Let f ∈ R(l,m) and g ∈ R(m,n) then for i = 0, . . . , n− 1 one has

[2015.08.26.eq7](f ◦̂g)(i) = g(f(i)) (2)

or, in the sequence notation

[2015.08.24.eq1](f0, . . . , fm−1)◦̂g = (g(f0), . . . , g(fm−1)) (3)

Proof: After we insert the coercions the equality (2) becomes

(f ◦̂g)(i) = bind(g)(f(i))

which is equivalent to the definition (1) of f ◦̂g.

Lemma 2.9 [2015.08.30.l1] Let f ∈ F (l,m), g ∈ R(m,n) and i ∈ stn(l). Then one has

[2015.08.26.eq4](f ◦̂g)(i) = g(f(i)) (4)

Proof: Inserting coercions we get the goal

(φR(f)◦̂g)(i) = g(f(i))

which follows by application of Lemma 2.6(3).

Remark 2.10 [2015.08.30.rem3] In the UniMath, or any similar, formalization there is a differ-
ence between the equalities of Lemmas 2.8 and 2.9. The equality of the first lemma is obtained by
unfolding the definitions of ◦̂ and of ◦. As such it is a substitutional equality which can be used to
directly substitute the left hand side of (2) for the right hand side and vice versa. The equality of
the second lemma is obtained by unfolding definitions and then applying the equality of Definition
2.1. As a declared equality it is only a transportational one which makes it impossible to use it to
directly substitute one hand side of the equality for another. Instead a special “transport” function
has to be used.

In this paper we will not distinguish between the two types of equality in part because this distinc-
tion is non-existent in either the Zermelo-Fraenkel theory or HOL. Nevertheless, some of our choices,
such as the one explained in Remark 2.7, have been affected by the existence of this distinction.

For n ∈ N and i = 0, . . . , n− 1 let
xni = ηn(i) ∈ R(n)

then for f ∈ R(n,m) we have

[2015.08.24.eq2]f(xni) = bind(f)(ηn(i)) = f(i) (5)

In our sequence notations, for an element x of a set X, the expression (x) denotes the function
stn(1)→ X that takes 0 to x. With this fact in mind observe also that for f ∈ R(n,m) one has

[2015.08.24.eq5](xni)◦̂f = f(xni) = f(i) (6)

where the first equality is by (3) and the second one by (5).

11

Let
∂in : stn(n)→ stn(n+ 1)

for 0 ≤ i ≤ n be the increasing inclusion that does not take the value i and

σin : stn(n+ 2)→ stn(n+ 1)

for 0 ≤ i ≤ n be the increasing surjection that takes the value i twice. Taking into account that,
in the notation of [?], [n] = stn(n+ 1) these are the standard generators of the simplicial category
∆ together with ∂0

0 : stn(0)→ stn(1).

In our sequence notation we have

[2015.08.24.eq7]φR(∂in) = (xn+1
0 , . . . , xn+1

i−1 , x
n+1
i+1 , . . . , x

n+1
n) (7)

and
[2015.08.24.eq8]φR(σin) = (xn+1

0 , . . . , xn+1
i−1 , x

n+1
i , xn+1

i , xn+1
i+1 , . . . , x

n+1
n) (8)

in particular
[2015.07.12.eq5]φR(∂nn) = (xn+1

0 , . . . , xn+1
n−1) (9)

Let
ιin : stn(n)→ stn(n+ i)

be the function given by ιin(j) = j for j = 0, . . . , n− 1. Note that we have

[2015.08.22.eq7]ι1n = ∂nn (10)

and
[2015.08.22.eq8]ιin(xnj) = bind(φR(ιin))(ηn(j)) = (ηn ◦ bind(φR(ιin)))(j) =

φR(ιin)(j) = ηn+i(ι
i
n(j)) = ηn+i(j) = xn+i

j (11)

Lemma 2.11 [2015.08.26.l1] Let f ∈ R(n + 1, n). Then ι1n◦̂f = ηn if and only if f(i) = xin for
i = 0, . . . , n− 1.

Proof: For i = 0, . . . , n− 1 we have

xin = ηn(i) = (ι1n◦̂f)(i) = f(ι1n(i)) = f(i)

For f ∈ R(n,m), f = (f0, . . . , fn−1) define an element qq(f) ∈ R(n+ 1,m+ 1) by the formula:

[2015.08.26.eq9]qq(f) = (ι1m(f0), . . . , ι1m(fn−1), xm+1
m) (12)

Lemma 2.12 [2015.08.26.l2] For i ∈ N and f = (f0, . . . , fn−1) in R(n,m) one has

qqi(f) = (ιim(f0), . . . , ιim(fn−1), xm+i
m , . . . , xm+i

m+i−1)

12

Proof: Straightforward by induction on i.

Lemma 2.13 [2015.08.26.l3a] For n, i ∈ N one has

qqi(ι1n) = ∂nn+i

Proof: Inserting coercions we see that we have to prove that

qqi(φR(ι1n)) = φR(∂n+i
n)

We have φR(ι1n) = (xn+1
0 , . . . , xn+1

n−1). By Lemma 2.12 and (11) we get

qqi(φR(ι1n)) = (ιin+1(xn+1
0), . . . , ιin+1(xn+1

n−1), xn+1+i
n+1 , . . . , xn+1+i

n+i) =

= (xn+1+i
0 , . . . , xn+1+i

n−1 , xn+1+i
n+1 , . . . , xn+1+i

n+i) = φR(∂n+i
n)

where the last equality is (7).

Lemma 2.14 [2015.08.28.l1] For i,m ∈ N and r ∈ R(m) one has

qqi(xm0 , . . . , x
m
m−1, r) = (xm+i

0 , . . . , xm+i
m−1, ι

i
m(r), xm+i

m , . . . , xm+i
m+i−1)

Proof: One has

qqi(xm0 , . . . , x
m
m−1, r) = (ιim(xm0), . . . , ιim(xmm−1), ιim(r), xm+i

m , . . . , xm+i
m+i−1) =

(xm+i
0 , . . . , xm+i

m−1, ι
i
m(r), xm+i

m , . . . , xm+i
m+i−1) =

where the first equality is by Lemma 2.12 and the second one by (11).

Define, for any strict algebraic theory R, an operation σR such that form m,n ∈ N, n > m and
r ∈ R(m), s ∈ R(n) one has

[2015.09.07.eq1]σR(m, r, n, s) = qqn−m−1(xm0 , . . . , x
m
m−1, r)(s) =

(xn−1
0 , . . . , xn−1

m−1, ι
n−m−1
m (r), xn−1

m , . . . , xn−1
n−2)(s) (13)

This operation is a dependent function of the form

σR : {m ∈ N, r ∈ R(m), n ∈ N, s ∈ R(n) |n > m} → R(n− 1),

i.e., a function whose codomain depends on the argument.

In the Zermelo-Fraenkel theory this can be expressed as follows. Let us fix a universe UU . Then a
dependent function f with a domain dom is a pair of functions codom : dom→ UU and f : dom→
UU such that for all x ∈ dom one has f(x) ∈ codom(x). Introducing a third parameter U instead
of a fixed universe UU and taking equivalence classes with respect to the obvious relation obtained
from inclusions U ⊂ U ′ one can define dependent functions in set theory without using a universe.

In the language of UniMath and other similar “dependently typed ” languages there is a syntactic
mechanism for working with variable codomains of functions which are called type families. In
such languages σR can be directly defined as dependent function with the codomain family given
by codom(σR)(m, r, n, s) = R(n− 1).

Of the four arguments m, r, n and E of σR we will use m and n as implicit arguments, that is,
arguments that are not written explicitly because they often can be inferred from the remaining
arguments by a simple algorithmic procedure. In cases when m and n can not be inferred from r
and E, which we will not encounter in this paper, the syntax of the proof assistant Coq is to write
@σR instead of σR and to supply all four arguments explicitly.

13

3 The C-system C(R)

Define a category C(R) as follows. Ob(C(R)) = N is the set of natural numbers. The set of
morphisms of C(R) is given by

Mor(C(R)) = qm,n∈NR(n,m)

with the obvious domain and codomain functions. To distinguish the positions in formulas where
natural numbers are used as objects of C(R) we will write in such places m̂ instead of m, n̂ instead
of n etc.

The composition of morphisms is defined by the formula

((k̂, m̂), f) ◦ ((m̂, n̂), g) = ((k̂, n̂), f ◦̂g)

and the identity morphisms by the formula

[2015.08.22.eq4]Idn̂ = ((n̂, n̂), ηn) = ((n̂, n̂), (xn0 , . . . , x
n
n−1))) (14)

The axioms of a category follow from Lemma 2.6(1,2).

We also consider the precategory F with the set of objects Ob(F) = N and the set of morphisms
given by

Mor(F) = qn,mF (n,m)

The domain and codomain functions are obvious and the identity morphisms and compositions are
defined by identity functions and compositions of functions between the standard finite sets.

The identity function on N together with the mapping

(ΦR)Mor : ((n,m), f) 7→ ((m̂, n̂), φR(f))

defines, in view of the obvious equality φR(Idn̂) = ηn and Lemma 2.6(3), a functor

ΦR : F op → C(R)

(i.e., a contravariant functor from F to C(R)).

Remark 3.1 [2015.08.19.rem1] The pair (C(R)op,Φop
R) is an algebraic theory in the sense of

Lawvere (cf. [?, Definition on p.62]). It should be possible to prove, as noted in [?, after Theorem
3.3], that the function R 7→ (C(R)op,Φop

R) is an equivalence between strict algebraic theories and
algebraic theories.

For n ∈ N, let ft(n̂+ 1) = n̂ and let ft(0̂) = 0̂.

For n ∈ N, let p
n̂+1

: n̂+ 1→ n̂ be the morphism ((n̂+ 1, n̂), ι1n), where we have used our coercion

convention to write ι1n instead of φR(ι1n). In the sequence notation we have

[2015.08.24.eq6]p
n̂+1

= ((n̂, n̂+ 1), (xn+1
0 , . . . , xn+1

n−1)) (15)

Let p0̂ = Id0̂.

Lemma 3.2 [2015.07.24.l1] One has:

14

1. Let f = ((m̂, n̂+ 1), ff), where ff = (f0, . . . , fn), be a morphism. Then

f ◦ p
n̂+1

= ((m̂, n̂), (f0, . . . , fn−1))

2. Let f = ((m̂, n̂), ff), where ff = (f0, . . . , fn−1), be a morphism. Then

p
m̂+1
◦ f = (ι1m(f0), . . . , ι1m(fn−1))

Remark 3.3 [2015.08.18.rem2] In the second assertion of the lemma we use our coercion con-
vention in the right hand side of the equality. The full form of the expressions ι1m(fi) that we use
there are bind(φR(ι1m))(fi).

Proof: The first assertion follows by unfolding definitions from (4).

The second asserting follows by unfolding definitions from (3).

Lemma 3.4 [2015.08.20.l1] For any n ∈ N the square

[2015.08.20.eq3]

n̂+ 1
((n̂+1,1̂),(xn+1

n))−−−−−−−−−−→ 1

p
n̂+1

y yp1̂

n̂
((n̂,0̂),())−−−−−→ 0

(16)

is a pull-back square in C(R).

Proof: Since 0̂ is a final object, we need to check that for any m the function

HomC(R)(m̂, n̂+ 1)→ HomC(R)(m̂, n̂)×HomC(R)(m̂, 1̂)

given by ((m̂, n̂+ 1, f) 7→ (((m̂, (n̂+ 1, f)) ◦ p
n̂+1

), ((m̂, (n̂+ 1, f)) ◦ (xn+1
n)), is a bijection. This

function is isomorphic to the function

f 7→ ((ι1n◦̂f), (xn+1
n ◦̂f))

that can be further computed using (4) and (6) to be equal to the function

(f0, . . . , fn)→ ((f0, . . . , fn−1), (fn))

that is clearly a bijection.

Given a morphism f = ((m̂, n̂), ff) : m̂→ n̂ in C(R) set

[2015.08.26.eq1]f∗(n̂+ 1) = m̂+ 1 (17)

and define a morphism q(f) : m̂+ 1→ n̂+ 1 as

[2015.08.22.eq1]q(f) = ((m̂+ 1, n̂+ 1), qq(ff)) (18)

where qq(ff) is defined in (12).

15

Lemma 3.5 [2015.08.18.l4] For any f as above the square

[2015.08.20.eq2]

m̂+ 1
q(f)−−−→ n̂+ 1

p
m̂+1

y p
n̂+1

y
m̂

f−−−→ n̂

(19)

is a pull-back square.

Proof: Let us show first that this square commutes. We need to show that for each i = 0, . . . , n−1
one has

(ι1n◦̂qq(ff))(i) = (ff ◦̂ι1m)(i)

We have
(ι1n◦̂qq(ff))(i) = qq(ff)(i) = ι1m(ff(i))

where the first equality is by (4) and the second equality by definition of qq(ff). On the other
hand

(ff ◦̂ι1m)(i) = ι1m(ff(i))

by (2). To show that the square (19) is a pull-back square let us consider the diagram

m̂+ 1
q(f)−−−→ n̂+ 1

((n̂+1,1̂),xn+1
n)−−−−−−−−−→ 1̂

p
m̂+1

y p
n̂+1

y yp1̂

m̂
f−−−→ n̂

((n̂,0̂),())−−−−−→ 0

We have

q(f) ◦ ((n̂+ 1, 1̂), (xn+1
n)) = ((m̂+ 1, 1̂), (xn+1

n)◦̂qq(ff)) = ((m̂+ 1, 1̂), (xm+1
m)) (20)

where the second equality is by (6). Therefore the outer square of this diagram is of the form (16)
and therefore is a pull-back square by Lemma 3.4. The right hand side square of this diagram is
of the same form and therefore is a pull-back square as well. The left hand side square commutes.
Therefore the left hand side square is a pull-back square by the general properties of pull-back
squares.

Problem 3.6 [2015.08.20.prob1] To construct a structure of a C-system on the category C(R).

Construction 3.7 [2015.08.20.constr1] For the definition of the C-system that we will use see
[?, Def. 2.1 and Def. 2.3].

The length function is the identity function Ob(C(R))→ N.

The object pt is 0̂.

The ft function was defined above.

The morphisms pn̂ were defined above.

The objects f∗(X) were defined above.

One defines q(f,X) as q(f).

16

The first four properties of [?, Def. 2.1] are obvious.

The fifth property is the commutativity part of Lemma 3.5.

The sixth property is obvious.

To prove the seventh property consider g = ((k̂, m̂), gg) and f = ((m̂, n̂), ff). We need to show
that

q(g) ◦ q(f) = q(g ◦ f)

Consider the diagram

k̂ + 1
q(g)−−−→ m̂+ 1

q(f)−−−→ n̂+ 1
((n̂+1,1̂),(xn+1

n))−−−−−−−−−−→ 1̂

p
k̂+1

y p
m̂+1

y p
n̂+1

y yp1̂

k̂
g−−−→ m̂

f−−−→ n̂
((n̂,0̂),())−−−−−→ 0̂

Since the rightmost square is a pull-back square it is sufficient to prove that

q(g) ◦ q(f) ◦ p
n̂+1

= q(g ◦ f) ◦ p
n̂+1

and
q(g) ◦ q(f) ◦ ((n̂+ 1, 1̂), (xn+1

n)) = q(g ◦ f) ◦ ((n̂+ 1, 1̂), (xn+1
n))

The first equality follows from the commutativity of the left hand side and central squares of the
diagram and the commutativity of the square (19) for g ◦ f . For the second equality we have

q(g) ◦ q(f) ◦ ((n̂+ 1, 1̂), (xn+1
n)) = q(g) ◦ ((m̂+ 1, 1̂), (xm+1

m)) = ((k̂ + 1, 1̂), (xk+1
k))

and
q(g ◦ f) ◦ ((n̂+ 1, 1̂), (xn+1

n)) = ((k̂ + 1, 1̂), (xk+1
k))

where all three equalities are of the form (20). This completes the construction of the structure of
a C0-system on C(R). To extend it to the structure of a C-system we can apply [?, Prop. 2.4] and
Lemma 3.5.

Recall that for a C-system CC, and object Γ of CC such that l(Γ) ≥ i we let pΓ,i denote the
morphism Γ→ fti(Γ) defined inductively as

pΓ,0 = IdΓ

pΓ,i+1 = pΓ ◦ pft(Γ),i

For Γ as above and f : Γ′ → fti(Γ) we let f∗(Γ, i) and

q(f,Γ, i) : f∗(Γ, i)→ Γ

define a pair of an object and a morphism defined inductively as

f∗(Γ, 0) = Γ′ q(f,Γ, 0) = f

f∗(Γ, i+ 1) = q(f, ft(Γ), i)∗(Γ) q(f,Γ, i+ 1) = q(q(f, ft(Γ), i),Γ)

17

For Γ,Γ′ in a C-system let us write Γ ≤ Γ′ if l(Γ) ≤ l(Γ′) and Γ = ftl(Γ
′)−l(Γ)(Γ′). We will write

Γ < Γ′ if Γ ≤ Γ′ and l(Γ) < l(Γ′).

If Γ′ is over Γ we will denote by pΓ′,Γ the morphism

pΓ′,l(Γ′)−l(Γ) : Γ′ → Γ

If Γ′ and Γ′′ are over Γ then we have morphisms

pΓ′,Γ : Γ′ → Γ

pΓ′′,Γ : Γ′′ → Γ

and we say that a morphism f : Γ′ → Γ′′ is over Γ if

f ◦ pΓ,Γ′′ = pΓ,Γ′

If Γ′ is an object over Γ and f : ∆ → Γ is a morphism then let us denote simply by f∗(Γ′) the
object f∗(Γ′, n) where n = l(Γ′)− l(Γ). Note that n can always be inferred from f and Γ′.

Similarly we will write simply q(f,Γ) for q(f,Γ, n) since n can be inferred as l(Γ)− l(codom(f)).

Lemma 3.8 [2015.08.23.l1a] Let Γ′,Γ′′ be objects over Γ, a : Γ′ → Γ′′ a morphism over Γ and
f : ∆ → Γ a morphism. Then there is a unique morphism f∗(a) : f∗(Γ′) → f∗(Γ′′) over ∆ such
that the square

f∗(Γ′)
q(f,Γ′)−−−−→ Γ′

f∗(a)

y ya

f∗(Γ′′)
q(f,Γ′′)−−−−→ Γ′′

commutes.

Proof: We have a square

[2015.08.23.eq3]

f∗(Γ′′)
q(f,Γ′′)−−−−→ Γ′′

pf∗(Γ′′),∆

y ypΓ′′,∆

∆
f−−−→ Γ

(21)

This square is a pull-back square as a vertical composition of l(Γ′′) − l(Γ) pull-back squares. We
define f∗(a) as the unique morphism such that

[2015.08.23.eq1]f∗(a) ◦ q(f,Γ′′) = q(f,Γ′) ◦ a (22)

and
[2015.08.23.eq2]f∗(a) ◦ pf∗(Γ′′),∆ = pf∗(Γ′),∆ (23)

The first of these two equalities is equivalent to the commutativity of the square (21) and the
second to the condition that f∗(a) is a morphism over ∆.

Lemma 3.9 [2015.08.29.l2] Let a : Γ′ → Γ′′ be a morphism over Γ, Γ′′′ another object over Γ
and suppose that a is a morphism over Γ′′′. Let f : ∆→ Γ be a morphism. Then one has

[2015.08.29.eq2]f∗(a) = q(f,Γ′′′)∗(a) (24)

18

Proof: The morphisms involved in the proof can be seen on the diagram

f∗(Γ′)
q(f,Γ′)−−−−→ Γ′

f∗(a)

y ya

f∗(Γ′′)
q(f,Γ′′)−−−−→ Γ′′

pf∗(Γ′′),f∗(Γ′′′)

y ypΓ′′,Γ′′′

f∗(Γ′′′)
q(f,Γ′′′)−−−−−→ Γ′′′

pf∗(Γ′′′),∆

y ypΓ′′′,Γ

∆
f−−−→ Γ

The right hand side of (24) is a morphism over f∗(Γ′′′) and therefore a morphism over ∆. It remains
to verify that it satisfies equation (22). This follows immediately from its definition.

Let us describe the constructions introduced above in the case of C(R). Note that our wide-hat
notation that distinguishes the places in formulas where natural numbers are used as objects of
C(R) allows us to avoid the ambiguity that might have arisen otherwise. For example pn′,n could
be understood either as the canonical morphism n′ → n using the notation pΓ′,Γ introduced above
or as the canonical morphism n′ → n′ − n using the notation pΓ,i that we have used in [?]. The

use of the wide-hat diacritic allows to distinguish between p
n̂′,n̂

- a morphism n̂′ → n̂, and p
n̂′,n

- a

morphism n̂′ → n̂′ − n.

Lemma 3.10 [2015.08.22.l6] Let n, i ∈ N.

1. One has

(a) p
n̂+i,i

= ((n̂+ i, n̂), (xn0 , . . . , x
n
n−i−1)) = ((n̂+ i, n̂), ιn+i

n),

(b) for g = ((n̂′, n̂+ i), (g0, . . . , gn+i−1)) one has g ◦ p
n̂+i,i

= ((n̂′, n̂), (g0, . . . , gn−1)),

2. for f = ((m̂, n̂), ff) one has

f∗(n̂+ i, i) = m+ i

and
q(f, n̂+ i, i) = qi(f) = ((m̂+ i, n̂+ i), qqi(ff))

where qi(f) is the i-th iteration of q applied to f .

Proof: All three assertions a proved by induction on i. For the first assertion both parts are proved
by induction simultaneously. One has

1. the case i = 0 is (14) and the identity axiom of the category C(R),

2. for the successor of i we have

p
n̂+i+1,i+1

= p
n̂+i+1

◦ p
n̂+i,i

= ((̂n+ i+ 1, n̂), (xn0 , . . . , x
n
n−1))

19

where the second equality is by the second part of the inductive assumption. For the inductive
step in the second part we have

((n̂′, ̂n+ i+ 1), (g0, . . . , gn+i)) ◦ pn̂+i+1,i+1
= ((n̂′, ̂n+ i+ 1), (g0, . . . , gn+i)) ◦ pn̂+i+1

◦ p
n̂+i,i

=

((n̂′, n̂+ i), (g0, . . . , gn+i−1)) ◦ p
n̂+i,i

= ((n̂′, n̂), (g0, . . . , gn−1))

The proof of the first part of the second assertion is obvious. For the second part we have:

1. for i = 0 the assertion is obvious,

2. for the successor of i we have

q(f, n̂, i+ 1) = q(q(f, n̂− 1, i)) = q(qi(f))

and
q(qi(f)) = q(((m̂+ i, n̂+ i), qqi(ff))) = ((̂m+ i+ 1, ̂n+ i+ 1), qqi+1(ff))

Lemma 3.11 [2015.08.22.l7] Let f = ((n̂, n̂+ 1), (f0, . . . , fn)). Then f ◦ p
n̂+1

= Idn̂ if and only

if fi = xn+1
i for i = 0, . . . , n− 1.

Proof: It follows immediately from Lemma 2.11.

Lemma 3.12 [2015.09.09.l1] Let f = ((m̂, n̂), (f0, . . . , fn−1)) where n > 0. Then one has

sf = ((m̂, m̂+ 1), (xm0 , . . . , x
m
m−1, fn−1))

Proof: By [?, Definition 2.3(2)] we have that

sf ◦ pm̂+1
= Idm̂

Therefore, by Lemma 3.11, it is of the form ((m̂, m̂+ 1), (xm0 , . . . , x
m
m−1, sf)) for some sf ∈ R(m).

By [?, Definition 2.3(3)] we have f = sf ◦ q(ft(f)) where ft(f) = f ◦pn̂. By Lemma 3.2(1) we have

ft(f) = ((m̂, n̂− 1), (f0, . . . , fn−1)) and by (18) and (12) we have that

q(ft(f)) = ((m̂+ 1, n̂), (ι1m(f0), . . . , ι1m(fn−2), xm+1
m))

Therefore, by (3) we should have

(f0, . . . , fn−1) = (ι1m(f0), . . . , ι1m(fn−2), xm+1
m)◦̂(xm0 , . . . , xmm−1, sf)

which is equivalent to
fi = (xm0 , . . . , x

m
m−1, sf)(ι1m(fi))

for i = 0, . . . , n− 2 and
fn−1 = (xm0 , . . . , x

m
m−1, sf)(xm+1

m)

The first series of equalities follow for any sf from (2) since

ι1m◦̂(xm0 , . . . , xmm−1, sf) = (xm0 , . . . , x
m
m−1)

The last equality gives us, by (6) that fn−1 = sf .

Recall from [?] that for a C-system CC one defines Õb(CC) as the subset of Mor(CC) which
consists of morphisms s of the form ft(X)→ X such that l(X) > 0 and s ◦ pX = Idft(X).

20

Lemma 3.13 [2015.08.24.l1] Let f = ((m̂, n̂), ff) and let s = ((n̂, n̂+ 1), ss) be an element of

Õb. Then one has
f∗(s) = ((m̂, m̂+ 1), fs)

where
fs = (xm0 , . . . , x

m
m−1, ff(ssn))

Proof: The fact that the first m terms of the sequence representation of fs have the required form
follows from Lemma 3.11. It remains to prove that

fsm = ff(ssn)

By (18) we have

q(f, n̂+ 1) = q(f) = ((m̂+ 1, n̂+ 1), qq(ff))

The morphism f∗(s), as a morphism over m̂ is defined by the equation

f∗(s) ◦ q(f) = f ◦ s

which is equivalent to

qq(ff)◦̂fs = (ι1m(f0), . . . , ι1m(fn−1), xm+1
m)◦̂fs = ss◦̂ff

Considering only the last terms of the corresponding sequences we get

fsm = fs(xm+1
m) = ff(ssn)

where the first equality is (5).

Lemma 3.14 [2015.08.29.l1] Let f = ((m̂, n̂), ff) and let s = ((n̂+ i, ̂n+ i+ 1), ss) be an ele-

ment of Õb. Then one has

[2015.08.29.eq1]f∗(s) = ((m̂+ i, ̂m+ i+ 1), (xm+i
0 , . . . , xm+i

m+i−1, (qq
i(ff))(ssn+i))) (25)

Proof: The morphisms involved in the proof can be seen on the following diagram

m̂+ i
qi(f)−−−→ n̂+ i

f∗(s)

y ys

̂m+ i+ 1
qi+1(f)−−−−→ ̂n+ i+ 1

pm+i+1,i+1

y ypn+i+1,i+1

m̂
f−−−→ n̂

The morphism s is a morphism to Id
n̂+i

over n̂+ i. Therefore, we may apply Lemma 3.9 obtaining
the equality

f∗(s) = (qi(f))∗(s)

On the other hand by Lemma 3.10(2) we have qi(f) = ((m̂+ i, n̂+ i), qqi(ff)) and by Lemma 3.13
we have

((m̂+ i, n̂+ i), qqi(ff))∗s = ((m̂+ i, ̂m+ i+ 1), (xm+i
0 , . . . , xm+i

m+i−1, (qq
i(ff))(ssn))).

21

Another operation that we would like to have an explicit form of is operation δ. For C-system CC
and an object Γ in CC one defines δΓ : Γ→ p∗Γ(Γ) as the unique morphism over Γ such that

[2015.08.24.eq10]δΓ ◦ q(pΓ,Γ) = IdΓ (26)

Lemma 3.15 [2015.08.24.l5] In CC(R) one has:

δn̂ = ((n̂, n̂+ 1), (xn0 , . . . , x
n
n−1, x

n
n−1))

Proof: In view of Lemma 3.11, we have δn = ((n̂, n̂+ 1), (xn0 , . . . , x
n
n−1, dn)) for some dn ∈ R(n).

By Lemma 2.13 we have

q(pn̂) = ((n̂+ 1, n̂), ∂n−1
n) = ((n̂+ 1, n̂), (xn+1

0 , . . . , xn+1
n−2, x

n+1
n))

and the defining equation (26) gives us

((n̂, n̂+ 1, (xn0 , . . . , x
n
n−1, dn)) ◦ ((n̂+ 1, n̂), (xn+1

0 , . . . , xn+1
n−2, x

n+1
n)) = ((n, n), (xn0 , . . . , x

n
n−1))

i.e.,
(xn+1

0 , . . . , xn+1
n−2, x

n+1
n)◦̂(xn0 , . . . , xnn−1, dn) = (xn0 , . . . , x

n
n−1)

and comparing the last terms of the sequences we get

dn = (xn0 , . . . , x
n
n−1, dn)(xn+1

n) = xnn−1

Problem 3.16 To construct a bijection

[2015.08.24.eq9]mbR : Õb(C(R))→ qn∈NR(n) (27)

Construction 3.17 [2015.08.22.constr3] For s = ((n̂, n̂+ 1), ss) define

mbR(s) = (n, ssn)

To show that this is a bijection let us construct the inverse bijection. For n ∈ N and o ∈ R(n) set

mb!R(n, o) = ((n̂, n̂+ 1), (xn0 , . . . , x
n
n−1, o))

The fact that these functions are mutually inverse follows easily from Lemma 3.11.

Our next goal is to describe operations T ′, T̃ ′, S′, S̃′ and δ′ obtained from operations T , T̃ , S,
S̃ and δ that were introduced at the end of Section 3 in [?] through transport by means of the
bijection (27).

Let us first recall the definition of operations T , T̃ , S, S̃ and δ associated with a general C-system
CC.

Definition 3.18 [2015.08.26.def1] Let CC be a C-system. We will write Ob for Ob(CC) and

Õb for Õb(CC).

22

1. Operation T is defined on the set

Tdom = {Γ,Γ′ ∈ Ob | l(Γ) > 0 and Γ′ > ft(Γ)}

and takes values in Ob. For (Γ,Γ′) ∈ Tdom one has

T (Γ,Γ′) = p∗Γ(Γ′)

2. Operation T̃ is defined on the set

T̃dom = {Γ ∈ Ob, s ∈ Õb | l(Γ) > 0 and ∂(s) > ft(Γ)}

and takes values in Õb. For (Γ, s) ∈ T̃dom one has

T̃ (Γ, s) = p∗Γ(s)

3. Operation S is defined on the set

Sdom = {r ∈ Õb,Γ ∈ Ob |Γ > ∂(r)}

and takes values in Ob. For (r,Γ) ∈ Sdom one has

S(r,Γ) = r∗(Γ)

4. Operation S̃ is defined on the set

S̃dom = {r, s ∈ Õb | ∂(s) > ∂(r)}

and takes values in Õb. For (r, s) ∈ S̃dom one has

S(r, s) = r∗(s)

5. Operation δ is defined on the set

δdom = {Γ ∈ Ob | l(Γ) > 0}

and takes values in Õb. For Γ ∈ δdom, δ(Γ) is the unique morphism Γ → p∗Γ(Γ) over Γ such
that

δΓ ◦ q(pΓ,Γ) = IdΓ

Theorem 3.19 [2015.08.26.th1] Let Ob = Ob(C(R)) and let Õb
′

be the right hand side of (27).
One has:

1. Operation T ′ is defined on the set

T ′dom = {m̂, n̂ ∈ Ob |m > 0 and n > m− 1}

and is given by
T ′(m̂, n̂) = n̂+ 1

23

2. Operation T̃ ′ is defined on the set

T̃ ′dom = {m̂ ∈ Ob, (n, s) ∈ Õb
′
|m > 0 and n+ 1 > m− 1}

and is given by
T̃ ′(m̂, (n, s)) = (n+ 1, ∂m−1

n (s))

3. Operation S′ is defined on the set

S′dom = {(m, r) ∈ Õb
′
, n̂ ∈ Ob |n > m+ 1}

and is given by
S′((m, r), n̂) = n̂− 1

4. Operation S̃′ is defined on the set

S̃′dom = {(m, r) ∈ Õb
′
, (n, s) ∈ Õb

′
|n > m}

and is given by
S̃′((m, r), (n, s)) = (n− 1, σR(r, s))

5. Operation δ′ is defined on the subset

δ′dom = {n̂ ∈ Ob |n > 0}

and is given by
δ′(n̂) = (n, xnn−1)

Proof: We have:

1. Operation T ′ is the same as operation T for C(R) since Õb is not involved in it. The form
of T ′dom is obtained by unfolding definitions and the formula for the operation itself follows
from (17).

2. Operation T̃ ′ is defined on the set of pairs (m̂ ∈ Ob, (n, s) ∈ Õb
′
) such that m > 0 and

∂(mb!R(n, s)) > m−1. Since ∂(mb!R(n, s) = n+1 we obtain the required domain of definition.
The formula by the operation itself is obtained immediately by combining Lemma 3.14 and
Lemma 2.13.

3. Operation S′ is defined on the set of pairs ((m, r) ∈ Õb
′
, n̂ ∈ Ob) such that n > ∂(mb!R(m, r)).

Since ∂(mb!R(m, r)) = m + 1 we obtained the required domain of definition. The operation
itself is given by

S′((m, r), n) = (mb!R(m, r))∗(n̂) = ((m̂, m̂+ 1), (xm0 , . . . , x
m
m−1, r))

∗(n̂)) =

̂n+m− (m+ 1) = n̂− 1

4. Operation S̃′ is defined on the set of pairs (m, r), (n, s) ∈ Õb
′

such that ∂(mb!R(n, s)) >
∂(mb!R(m, r)) which is equivalent to n > m. The formula by the operation itself is obtained
immediately by combining Lemma 3.14 with i = n −m − 1, Lemma 2.14 and the definition
of σR in (13).

24

5. Operation δ′ is defined on the subset n̂ ∈ Ob such that n > 0 and is given by

δ′(n̂) = mbR(δ(n̂)) = mbR((n̂, n̂+ 1), (xn0 , . . . , x
n
n−1, x

n
n−1)) = (n, xnn−1)

Remark 3.20 [2015.08.29.rem1] The description of operations T ′, T̃ ′, S, S̃′ and δ given in
Theorem 3.19 uses only three operations on the sets R(n):

1. for all m,n ∈ N, n > m, a function σm,n : R(m)×R(n)→ R(n− 1) given by

σm,n(r, s) = @σ(m, r, n, s) = (xn−1
0 , . . . , xn−1

m−1, ι
n−m−1
m (r), xn−1

m , . . . , xn−1
n−2)(s)

2. for all i, n ∈ N, n ≥ i, a function ∂in : R(n)→ R(n+ 1)

3. for all n ∈ N an element xn ∈ R(n+ 1) given as xn = ηn+1(n).

Therefore, the conjectural equivalence between C-systems and B-systems implies that it is possible
to construct C(R) starting with a family of sets R(n) equipped with operations:

σm,n : R(m)×R(n)→ R(n− 1)

∂in : R(n)→ R(n+ 1)

xn ∈ R(n+ 1)

that satisfy some axioms. To avoid working with families of sets or types which might be inconve-
nient in simple-typed languages such as HOL we can further re-write this definition as follows. Let
lR be the disjoint union of R(n) for all n. Then the operations that we need to consider are:

1. a function l : lR→ N,

2. a function η : N→ lR,

3. a function ∂ : {r ∈ lR, i ∈ N | l(r) ≥ i} → lR,

4. a function σ : {r, s ∈ lR, | l(r) > l(s)} → lR,

such that

1. for all n ∈ N, l(η(n)) = n+ 1,

2. for all r ∈ lR, i ∈ N such that l(r) ≥ i, l(∂(r, i)) = l(r) + 1,

3. for all r, s ∈ lR such that l(s) > l(r) one has l(σ(r, s)) = l(s)− 1.

Clearly more axioms need to be added to obtain a full subcategory in the category whose objects are
sets lR with operations of the form l, η, ∂, σ that is equivalent to the category of Lawvere theories or
equivalently strict algebraic theories or equivalently Fiore-Plotkin-Turi substitution algebras. When
all the axioms are added one would obtain a definition of an l-algebraic theory that is convenient
for formalization both in set theory and in HOL.

25

Remark 3.21 [2015.08.29.rem1b] It would appear that there should be examples of (η, ∂, σ)-
structures that do not arise from strict algebraic theories. Indeed, it seems unclear why it should
be possible to realize the action of the symmetric group on R(n) using these operations since in
the case of strict algebraic theories they all seem to respect the linear ordering on the sets stn(n)
in some sense.

In the substitution notation of Remark 4.1, given r in R(m) and E in R(n),

σ(r, E) = E[r/xm, xm/xm+1, . . . , xn−2/xn−1],

i.e., operation σ corresponds to the substitution of an expression in variables x0, . . . , xm−1 for the
variable xm in an expression in variables x0, . . . , xn followed by a downshift of the indexes of the
variables with the higher index.

The operation ∂in and the constants xn are similarly defined in terms of linear orderings.

To see how it is, nevertheless, possible to realize, for example, the permutation of x0 and x1 consider
the following. First let, for all i, n ∈ N,

ιin = ∂n+i−1
n+i−1 ◦ . . . ◦ ∂

n
n : R(n)→ R(n+ i)

Then define for all i, n ∈ N, n ≥ i+ 1 an element xni ∈ R(n) by the formula

xni = ιn−i−1
i+1 (xi)

such that, in particular, xn+1
n = xn.

Define now a function ψ : R(2)→ R(2) by the formula

ψ = ∂0
2 ◦ ∂0

3 ◦ σ3,4(x3
0,−) ◦ σ2,3(x2

1,−)

One can verify that for any strict algebraic theory R one has ψ = φR(σ) where σ is the permutation
of 0 and 1 in stn(2).

In the substitution notation this can be seen as follows:

ψ(E(x2
0, x

2
1)) = σ2,3(x2

1, σ3,4(x3
0, ∂

0
3(∂0

2(E(x2
0, x

2
1))))) = σ2,3(x2

1, σ3,4(x3
0, ∂

0
3(E(x3

1, x
3
2)))) =

σ2,3(x2
1, σ3,4(x3

0, E(x4
2, x

4
3))) = σ2,3(x2

1, E(x3
2, x

3
0)) = E(x2

1, x
2
0)

Remark 3.22 [2015.08.29.rem2] The fact that the full structure of a strict algebraic theory can
be reconstructed from operations σ, ∂ and η of the form described above can also be approached via
the comparison of such σ∂η-structures with the substitution algebras of [?, Definition 3.1]. Such a
comparison is more straightforward since their operation ζ of the form R(n+ 1)×R(n)→ R(n) is
the same as operation (s, r) 7→ σn,n+1(r, s).

4 The C-system CC(R,LM).

Let R be a strict algebraic theory and let LM = (LM,LMMor) be a presheaf of sets on the category
C(R), i.e., a functor C(R)op → Sets.

If the strict algebraic theory was obtain from a monad on sets then any left module over this monad,
by defining a covariant functor from the Kleisli category of the monad to sets (see [?, Prop. 5]),

26

defines a presheaf on C(R), that, as a category, is a subcategory in the opposite category to the
Kleisli category of the monad. We again use the coercion mechanism to write LM both for the left
R-module and for the presheaf of sets on C(R) that it defines.

The morphism component LMMor of LM is a function that sends a morphism f = ((m̂, n̂), ff)
from m̂ to n̂ in C(R) to a function LMMor(f) ∈ Fun(LM(n̂), LM(m̂)). In particular we have for
each m,n ∈ N a function

R(n,m)→ Fun(LM(n̂), LM(m̂))

given by ff 7→ LMMor((m̂, n̂), ff)). We will use this function as a coercion so that, for ff ∈
R(n,m) and E ∈ LM(n̂) the expression ff(E) needs to be expanded into LMMor(((m̂, n̂), ff))(E)
before the computation can occur (see the explanation after Lemma 2.6 for more details).

Remark 4.1 [2015.08.18.rem1] If we think of E ∈ LM(n̂) as of an expression in variables
0, . . . , n−1 then the action of R(n,m) on LM(n̂) can be thought of as the substitution. This analogy
can be used to introduce the notation when for ff = (f0, . . . , fn−1) ∈ R(n,m) and E ∈ LM(n̂)
one writes ff(E) as

ff(E) = E[f0/0, . . . , fn−1/n− 1]

For example, in this notation we have

∂in(E) = E[0/0, . . . , i− 1/i− 1, i+ 1/i, . . . , n/n− 1]

Similarly, for E ∈ LM(n̂+ 2) one has

σin(E) = E[0/0, . . . , i/i, i/i+ 1, . . . , n/n+ 1]

and ιin(E) is “the same expression” but considered as an expression of n+ i variables.

Example 4.2 [2015.09.07.rem3] An important example of LM is given by the functor Φ given
on objects by ΦOb(n̂) = R(n) and on morphisms by

ΦMor((m̂, n̂), r)(s) = r(s)

We will denote this functor by the same symbol R as the underlying strict algebraic theory.

This functor is isomorphic to the (contravariant) functor represented by the object 1̂ but it is not
equal to this functor since the set of elements of the form ((n̂, 1̂), r′) where r′ ∈ R(1, n) is isomorphic
but not equal to the set R(n).

Example 4.3 [2015.09.07.rem4] Another important example of a presheaf LM is the constant
presheaf corresponding to a set S. The C-system CC(R,LM) for LM = S corresponds to the
multi-sorted algebraic theory with a fixed set of sorts S.

Taking LM to be a sub-presheaf of LM0 × S one can add and extra “sorting dimension” to a
theory. Cf. Remark ??? ??.

Recall that we defined, for any strict algebraic theory R, an operation σ that we can write in the
form

σR : {m ∈ N, r ∈ R(m), n ∈ N, s ∈ R(n) |n > m} → R(n− 1)

which is a dependent function, i.e., a function whose codomain depends on the argument.

27

For LM as above define a dependent function σLM with the domain of definitions

dom(σLM) = {m ∈ N, r ∈ R(m), n ∈ nat, E ∈ LM(n̂) |n > m},

and the codomain function

codom(σLM)(m, r, n,E) = LM(n̂− 1)

by the formula

[2015.09.07.eq2]σLM(m, r, n,E) = (qqn−m−1(xm0 , . . . , x
m
m−1, r))(E) =

(xn−1
0 , . . . , xn−1

m−1, ι
n−m−1
m (r), xn−1

m , . . . , xn−1
n−2)(E) (28)

where the second equality is the equality of Lemma 2.14. Alternatively, one can think of σLM as
of a family of functions σLM,n with different codomains but we will use the dependent function
viewpoint.

Of the four arguments m, r, n and E of σLM we will use m and n as implicit arguments, that is,
arguments that are not written explicitly because they often can be inferred from the remaining
arguments by a simple algorithmic procedure. In cases when m and n can not be inferred from r
and E, which we will not encounter in this paper, the syntax of the proof assistant Coq is to write
@σLM instead of σLM and to supply all four arguments explicitly.

Define a category CC(R,LM) as follows.

Ob(CC(R,LM)) = qn∈NObn(R,LM)

where
Obn(R,LM) = LM(0̂)× . . .× LM(n̂− 1)

Remark 4.4 [2015.08.14.rem1] In a univalent formalization based on UniMath one can de-
fine Obn(R,LM) as the type forall(i : stn n), LM (i). Based on this formalization elements of
Obn(R,LM) are dependent functions with the domain stn(n) and the codomain function i 7→
LM (̂i). Therefore, for X ∈ Obn and i ∈ stn(n) it makes sense to write X(i) for the i-th component
of X. However, for typographical reasons, we will sometimes write Xi instead of X(i).

Define a function lf on Ob(CC(R,LM)) setting lf (n,A) = n.

The set of morphisms of CC(R,LM) is given by

Mor(CC(R,LM)) =
∐

Γ,Γ′∈Ob(CC(R,LM))

R(lf (Γ′), lf (Γ))

with the obvious domain and codomain maps.

The composition of morphisms in CC(R,LM) is defined by the formula

((Γ,Γ′), f) ◦ ((Γ′,Γ′′), g) = ((Γ,Γ′′), g◦̂f)

and the identity morphisms by

[2015.08.22.eq6]IdΓ = ((Γ,Γ), ηlf (Γ)) = ((Γ,Γ), (xn0 , . . . , x
n
n−1)) (29)

The axioms of a category follow from Lemma 2.6(1,2).

The proof of the following lemma is omitted because of its simplicity.

28

Lemma 4.5 [2015.08.22.l1] The mappings

Γ 7→ lf (Γ)

((Γ,Γ′), f) 7→ ((lf (Γ), lf (Γ′)), f)

define a fully faithful functor
Fl : CC(R,LM)→ C(R)

Remark 4.6 [2015.09.01.rem1] For any two objects Γ,Γ′ of CC(R,LM) such that lf (Γ) =
lf (Γ′) = n, the formula

canΓ,Γ′ = ((Γ,Γ′), (xn0 , . . . , x
n
n−1))

defines a morphism which is clearly an isomorphism with canΓ′,Γ being a canonical inverse. There-
fore, all objects of the same length in CC(R,LM) are “canonically isomorphic”.

Remark 4.7 [2015.09.01.rem2] If LM(0̂) = ∅ then CC(R,LM) = ∅. On the other hand, the
choice of an element y in LM(0̂) defines distinguished elements ιn0 (y) in all sets LM(n̂) and therefore
distinguished objects

yn = (n, (ι00(y), . . . , ιn−1
0 (y))) ∈ Ob(CC(R,LM))

of length n for all n. Mapping n̂ to yn defines, as one can immediately prove from the definitions,
a functor lFy : C(R)→ CC(R,LM).

This functor clearly satisfies the conditions lFy ◦ Fl = IdC(R).

One verifies easily that the morphisms

canΓ,ylf (Γ)
: Γ→ lFy(Fl(Γ))

form a natural transformation. We conclude that Fl and lFy is a pair of mutually inverse equiva-
lences of categories.

However this equivalence is not an isomorphism unless LM(n̂) ∼= unit for all n.

For Γ ∈ Ob(CC(R,LM)) such that Γ = (n+ 1, (T0, . . . , Tn)) denote by ft(Γ) the object

ft(Γ) = (n, (T0, . . . , Tn−1))

and by pΓ the morphism
pΓ = (Γ, (ft(Γ), ι1n))

The following immediate analog of Lemma 3.2 holds in CC(R,LM):

Lemma 4.8 [2015.08.22.l6b] One has:

1. Let f = ((Γ′,Γ), (f0, . . . , fn)), then

f ◦ pΓ = ((Γ′, ft(Γ)), (f0, . . . , fn−1))

2. Let f = ((ft(Γ′),Γ), (f0, . . . , fn)), then

pΓ′ ◦ f = (ι1m(f0), . . . , ι1m(fn−1))

29

Proof: Since Fl is a fully faithful functor it is sufficient to verify that the asserted equalities hold
after application of Fl. This follows immediately from Lemma 3.2.

Given two objects Γ′ = (m, (T ′0, . . . , T
′
m−1)) and Γ = (n + 1, (T0, . . . , Tn)) and a morphism f =

((Γ′, ft(Γ)), ff) define an object f∗(Γ) by the formula:

[2015.09.09.eq3old]f∗(Γ) = (m+ 1, (T ′0, . . . , T
′
m−1, ff(Tn))) (30)

and a morphism q(f,Γ) : f∗(Γ)→ Γ by the formula

q(f,Γ) = ((f∗(Γ),Γ), qq(ff))

Lemma 4.9 [2015.08.26.l7] Let Γ = (n, (T0, . . . , Tn−1)) where n ≥ i, Γ′ = (m, (T ′0, . . . , T
′
m−1))

and let ((Γ′, fti(Γ)), ff) be a morphism. Then one has

f∗(Γ, i) = (m+ i, (T0,
′ , . . . , T ′m−1, ff(Tn−i), qq(ff)(Tn−i+1), . . . , qqi−1(ff)(Tn−1)))

Proof: By straightforward induction on i.

Lemma 4.10 [2015.08.26.l8] Let Γ = (n, (T0, . . . , Tn−1)) and Γ′ = (m, (T0, . . . , Tm−2, T)) where
n > m− 1. Then one has

p∗Γ′(Γ) = (n+ 1, (T0, . . . , Tm−2, T, ∂
m−1
m−1(Tm−1), . . . , ∂m−1

n−1 (Tn−1)))

Proof: One has
p∗Γ′(Γ) = ((Γ′, ft(Γ′)), ι1m−1)∗(Γ) =

(n+ 1, (T0, . . . , Tm−2, T, ι
1
m−1(Tm−1), . . . , qqn−m−2(ι1m−1)(Tn−1))) =

(n+ 1, (T0, . . . , Tm−2, T, ∂
m−1
m−1(Tm−1), . . . , ∂m−1

n−1 (Tn−1)))

where the second equality is by Lemma 4.9 and the third equality is by Lemma 2.13.

Lemma 4.11 [2015.08.18.l4b] For any Γ′, Γ and f as above the square

[2015.08.22.eq2]

f∗(Γ)
q(f,Γ)−−−→ Γ

pf∗(Γ)

y pΓ

y
Γ′

f−−−→ ft(Γ)

(31)

is a pull-back square.

Proof: Since Fl of Lemma 4.5 a fully faithful functor it is sufficient to show that the image of the
square (31) under this functor is a pull-back square. This image is the square

m+ 1
q(f)−−−→ n+ 1

pm+1

y pn+1

y
m

f−−−→ n

which is a pull-back square by Lemma 3.5.

30

Problem 4.12 [2015.08.17.prob1] To construct the structure of a C-system on the category
CC(R,LM).

Construction 4.13 [2015.08.17.constr1] The length function lf is already defined.

The object pt is the only object of length 0.

The function ft on objects of length > 0 is already defined. We set ft(pt) = pt.

The canonical morphisms pΓ have already been defined for elements of length > 0 and we define
ppt to be the identity morphism.

The operation f∗ on objects and morphisms q(f,Γ) is already defined.

The first four conditions of [?, Definition 2.1] are obvious.

The fifth condition is the commutativity of the squares (31) which is a part of Lemma 4.11.

The the sixth condition has two parts. One is that Id∗ft(Γ)(Γ) = Γ which follows from the identity

morphism property of the functor LM. The second part is that q(Idft(Γ),Γ) = IdΓ which follows
from the first part, the fact that Fl is fully faithful and the corresponding property of the C-system
C(R).

The seventh conditions also has two parts. The first one is that for g : Γ′′ → Γ′ one has g∗(f∗(Γ)) =
(g ◦ f)∗(Γ). If Γ′′ = (T ′′0 , . . . , T

′′
k−1) and g = ((Γ′′,Γ′), gg) then we have

g∗(f∗(Γ)) = g∗(T ′0, . . . , T
′
m−1, ff(Tn−1)) = (T ′′0 , . . . , T

′′
k−1, gg(ff(Tn)))

and
(g ◦ f)∗(Γ) = (T ′′0 , . . . , T

′′
k−1, (ff ◦̂gg)(Tn))

we conclude that g∗(f∗(Γ)) = (g ◦ f)∗(Γ) by the composition of morphisms property of the functor
LM.

The second part of the seventh condition follows from the fact that Fl is fully faithful and from
the second part of the seventh condition for C(R).

This completes the verification of the conditions of [?, Definition 2.1] and the construction of the
structure of a C0-system on CC(R,LM). To extend it to the structure of a C-system we apply [?,
Proposition 2.4] and Lemma 4.11.

We provide the following lemma without a proof because the proof is immediate from the definitions
and [?, Lemma 3.4].

Lemma 4.14 [2015.08.22.l4] The functor Fl : CC(R,LM) → C(R) is a homomorphism of
C-systems.

Remark 4.15 [2015.08.22.rem1] For f = ((m̂, n̂), ff) we have

(lFy(f))∗(yn+1) = (m+ 1, (ι00(y), . . . , ιm−1
0 (y), ff(ιn0 (y))))

By (2) we have
ff(ιn0 (y)) = (ιn0 ◦̂ff)(y) = ιm0 (y)

31

because both ιn0 ◦̂ff and ιm0 are elements of R(0,m) = R(m)stn(0) which is a one element set.
Therefore

(lFy(f))∗(yn+1) = ym+1

The rest of the conditions that one needs to prove in order to show that lF is a homomorphism of
C-systems is immediate from definitions and we obtain that

lFy : C(R)→ CC(R,LM)

is a homomorphism of C-systems. However it is not an isomorphism of C-systems and, as one
can see for example from our study of sub-quotients of CC(R,LM), the C-systems C(R) and
CC(R,LM) can be very different. Cf. Remark ??.

Remark 4.16 [2015.08.22.rem2.from.old] There is another construction of a pre-category from
(R,LM) which takes as an additional parameter a countable set V ar (with decidable equality)
which is called the set of variables. Let Fn(V ar) be the set of sequences of length n of pair-wise
distinct elements of V ar. Define the pre-category CC(R,LM, V ar) as follows. The set of objects
of CC(R,LM, V ar) is

Ob(CC(R,LM, V ar)) = qn∈N q(x0,...,xn−1)∈Fn(V ar) LM(0̂)× . . .× LM(n̂)

For compatibility with the traditional type theory we will write the elements of Ob(CC(R,LM, X))
as sequences of the form x0 : E1, . . . , xn−1 : En−1. The set of morphisms is given by

Mor(CC(R,LM, V ar)) = qΓ,Γ′∈ObR(lf (Γ′), lf (Γ))

The composition is defined in such a way that the projection

(x0 : E0, . . . , xn−1 : En−1) 7→ (E0, E1, . . . , En−1)

is a functor from CC(R,LM, V ar) to CC(R,LM).

This functor is clearly an equivalence but not an isomorphism of categories.

There are an obvious object pt, function ft and p-morphisms.

What is unclear is how to define operation f∗ on objects such as to satisfy the first parts of the
sixth and seventh conditions in the definition [?, Definition 2.1] of a C0-system. For Γ′ = (x′0 :
T ′0, . . . , x

′
m−1 : T ′m−1), Γ = (y0 : T0, . . . , yn : Tn) and f : Γ′ → ft(Γ) the object f∗(Γ) must be of

the form (x′0 : T ′0, . . . , x
′
m−1 : T ′m−1, z : T ′m) in order to satisfy the equation ft(f∗(Γ)) = Γ′ and we

should have z 6= x′0, . . . , x
′
m−1.

Consider the case when LM (̂i) = unit for all i. Then the problem is to construct functions

zn,m : Fm(V ar)× Fn+1(V ar)×R(n,m)→ V ar

such that zn,m(x′, y, f) does not occur in x′ and such that

[2015.08.22.eq1b]zn,m((x0, . . . , xn−1), (x0, . . . , xn−1, xn), ηn) = xn (32)

and for all x′ ∈ Fm, x′′ ∈ Fk, y ∈ Fn+1, f ∈ R(n,m) and g ∈ R(m, k) one has

[2015.08.22.eq2b]zn,k(x′′, y, g◦̂f) = zm,k(x′′, (x′0, . . . , x
′
m−1, zm,n(x′, y, f)), g) (33)

I do not know whether it is possible to construct a function z satisfying these two equations for a
general R.

32

Lemma 4.17 [2015.08.22.l5] A morphism f = ((Γ′,Γ), ff), where lf (Γ) = n + 1, belongs to

Õb(CC(R,LM)) if and only if Γ′ = ft(Γ) and ff(i) = xni for all i = 0, . . . , n− 1.

Proof: It follows immediately from Lemma 2.11.

The following analog of Lemma 3.12 for the C-system CC(R,LM) provides us with the explicit
form of the operation f 7→ sf .

Lemma 4.18 [2015.09.09.l2] Let f = ((Γ,Γ′), (f0, . . . , fn−1)) where n > 0. Then one has

[2015.09.09.eq1]sf = ((Γ, (ft(f))∗(Γ′)), (xm0 , . . . , x
m
m−1, fn−1)) (34)

where ft(f) = f ◦ pΓ′ and m = lf (Γ).

If Γ = (m, (X0, . . . , Xm)) and Γ′ = (n, (Y0, . . . , Ym)) then

[2015.09.09.eq2](ft(f))∗(Γ′) = (X0, . . . , Xm−1, (f0, . . . , fn−2)(Yn−1)) (35)

Proof: By definition sf is a morphism from Γ to (ft(f))∗(Γ). Therefore it is sufficient to show that
the left hand side of (34) agrees with the right hand side after application of the homomorphism
Fl. Since Fl is a homomorphism of C-systems, Fl(sf) = sFl(s) and our goal follows from Lemma
3.12.

Applying Lemma 4.8 we see that ft(f) = ((Γ, ft(Γ′)), (f0, . . . , fn−2)). Therefore (35) follows im-
mediately from (30).

For Lemma 4.20 below we first need some general results about homomorphisms of C-systems.

Lemma 4.19 [2015.09.03.l2] Let F : CC → CC ′ be a homomorphism of C-systems. Then one
has:

1. for Γ ∈ CC and i ∈ N one has F (pΓ,i) = pF (Γ),i,

2. for Γ,Γ′ ∈ CC, Γ ≤ Γ′ implies F (Γ) ≤ F (Γ′) and similarly for <,

3. for Γ′ ≥ Γ and f : ∆→ Γ one has

F (f∗(Γ′)) = (F (f))∗(F (Γ′))

4. for Γ′,Γ′′ ≥ Γ, a : Γ′ → Γ′′ over Γ and f : ∆→ Γ one has

F (f∗(a)) = (F (f))∗(F (a))

5. for Γ such that l(Γ) > 0 one has

F (δ(Γ)) = δ(F (Γ))

Proof: The proofs are straightforward and we leave them for the formalized version of the paper.

33

Lemma 4.20 [2015.09.03.l1] For i > 0, f : Γ′ → fti(Γ) and s = ((ft(Γ),Γ), ss) in Õb(CC(R,LM))
one has

f∗(s) = ((f∗(ft(Γ)), f∗(Γ)), (xm+i−1
0 , . . . , xm+i−1

m+i−2, (qq
i−1(ff))(ss(n− 1))))

where m = l(Γ′) and n = l(Γ).

Proof: Since Fl is fully faithful, it is sufficient, in order to verify the equality of two morphisms
to verify that their domain and codomain are equal and that their images under Fl are equal. For
the domain and codomain it follows from the definition of f∗ on morphisms. For the images under
Fl it follows from the fact that Fl is a homomorphism of C-systems, Lemma 4.19(4) and Lemma
3.14.

Problem 4.21 [2015.08.22.prob1] To construct a bijection

[2009.10.15.eq2]mbR,LM : Õb(CC(R,LM))→
∐
n∈N

Obn+1(R,LM)×R(n) (36)

Construction 4.22 [2015.08.22.constr1] [2014.06.30.l2] Let s ∈ Õb(CC(R,LM)). Then s =
((ft(Γ),Γ), ss)) for some ss ∈ R(n, n+ 1) and Γ = (n+ 1, X). We set:

mbR,LM(s) = (n, (X, ss(n)))

To show that this is a bijection let us construct an inverse. For n ∈ N, X ∈ Obn+1(R,LM) and
o ∈ R(n) let

mb!R,LM(n, (X, o)) = ((ft((n+ 1, X)), (n+ 1, X)), (xn0 , . . . , x
n
n−1, o))

This is a morphism from ft(Γ) to Γ where Γ = (n+ 1, X). The equation mb!R,LM(n, (Γ, o)) ◦ pΓ =
Idft(Γ) follows from Lemma 4.17.

Let us show now thatmbR,LM andmb!R,LM are mutually inverse bijections. Let s ∈ Õb(CC(R,LM))
be as above, then:

mb!R,LM(mbR,LM(s)) = mb!R,LM(n, (X, ss(n))) = ((ft(Γ),Γ), (xn0 , . . . , x
n
n−1, ss(n))) = s

where the last equality follows from the assumption that s ∈ Õb and Lemma 4.17.

On the other hand for X ∈ Obn+1(R,LM) and o ∈ R(n) we have

mbR,LM(mb!R,LM(n, (X, o))) = mbR,LM(ft((n+ 1, X)), ((n+ 1, X), (xn0 , . . . , x
n
n−1, o))) =

(n, (X, o))

This completes Construction 4.22.

Lemma 4.23 [2015.09.09.l3] Let f = ((Γ,Γ′), (f0, . . . , fn−1)) where Γ = (m,X), Γ′ = (n, Y) and
ff = (f0, . . . , fn−1). Then one has

mbR,LM(sf) = (m, ((X0, . . . , Xm−1, (f0, . . . , fn−2)(Yn−1)), fn−1))

34

Proof: It follows immediately from Lemma 4.18 and the formula for mbR,LM.

Consider operations T ′, T̃ ′, S′, S̃′ and δ′ obtained by transport by means of the bijection of Con-
struction 4.22 from the operations T , T̃ , S and S̃ and δ corresponding to the C-system CC(R,LM)
(cf. Definition 3.18). Let us give an explicit description of these operations.

Theorem 4.24 [2015.08.26.th2] Let Ob = Ob(CC(R,LM)) and let Õb
′

= Õb
′
(R,LM) be the

right hand side of (36). One has:

1. Operation T ′ is defined on the set T ′dom of pairs (m,X), (n, Y) ∈ Ob such that m > 0,
n > m− 1 and Xi = Yi for i = 0, . . . ,m− 2. It takes values in Ob and is given by

T ((m,X), (n, Y)) =

(n+ 1, (Y0, . . . , Ym−2, Xm−1, ∂
m−1
m−1(Ym−1), . . . , ∂m−1

n−1 (Yn−1)))

2. Operation T̃ ′ is defined on the set T̃ ′dom of pairs (m,X) ∈ Ob, (n, (Y , s)) ∈ Õb
′

such that

m > 0, n+ 1 > m− 1 and Xi = Yi for i = 0, . . . ,m− 2. It takes values in Õb′ and is given by

T̃ ′((m,X), (n, (Y , s))) = (n+ 1, (T ((m,X), (n, Y)), ∂m−1
n (s)))

3. Operation S′ is defined on the set of pairs (m, (X, r)) ∈ Õb
′
, (n, Y) ∈ Ob where n > m + 1

and Xi = Yi for i = 0, . . . ,m. It takes values in the set Ob and is given by

S′((m, (X, r)), (n, Y)) = (n−1, (Y0, . . . , Ym−1, σLM(r, Ym+1), σLM(r, Ym+2), . . . , σLM(r, Yn−1)))

4. Operation S̃′ is defined on the set of pairs (m, (X, r)) ∈ Õb
′
, (n, (Y , s)) ∈ Õb

′
such that n > m

and Xi = Yi for i = 0, . . . ,m. It takes values in Õb
′

and is given by

S̃′((m, (X, r)), (n, (Y , s))) = (n− 1, (S′((m, (X, r)), (n+ 1, Y))), σR(r, s))

5. Operation δ′ is defined on the subset of (m,X) in Ob such that n > 0. It takes values in Õb
′

and is given by
δ′((m,X)) = (m, (T ((m,X), (m,X)), xmm−1))

Proof: In the proof we will write mb and mb! instead of mbR,LM and mb!R,LM. We have:

1. Operation T ′ is the same as operation T for C(R) since Õb is not involved in it. The form of
T ′dom is obtained by unfolding definitions and using Lemma 4.8(1).

The operation itself is given by

T ′((m,X), (n, Y)) = p∗(m,X)((n, Y)) =

(m, (Y0, . . . , Ym−1, ∂
m−1
m−1(Ym−1), . . . , ∂m−1

n−1 (Yn−1)))

where the first equality is by Definition 3.18(1) and the second by Lemma 4.10.

35

2. Operation T̃ ′ is defined on the set of pairs ((m,X) ∈ Ob, (n, (Y , s)) ∈ Õb
′
) such that m > 0

and ∂(mb!(n, (Y , s))) > ft(m,X). Since ∂(mb!(n, (Y , s)) = (n+ 1, Y) we obtain the required
domain of definition from Lemma 4.8(1).

To verify the formula for the operation itself consider the equalities:

T̃ ′((m,X), (n, (Y , s))) = mb(p∗(m,X)(mb
!(n, (Y , s)))) =

mb(p∗(m,X)((ft((n+ 1, Y)), ((n+ 1, Y), (xn0 , . . . , x
n
n−1, s)))))

where the first equality is by Definition 3.18(2). By Lemma 4.20 we can extend these equalities
as follows:

mb(p∗(m,X)((ft((n+ 1, Y)), ((n+ 1, Y), (xn0 , . . . , x
n
n−1, s))))) =

mb(p∗Γ′(ft(Γ)), (p∗Γ′(Γ), (xn+1
0 , . . . , xn+1

n , (qqn−m+1(ι1m−1))(s)))) =

(n+ 1, (p∗Γ′(Γ), ∂m−1
n (s))) = (n+ 1, (T ((m,X), (n+ 1, Y)), ∂m−1

n (s)))

where Γ′ = (m,X), Γ = (n+1, Y), the first equality is by Lemma 4.20, the second by Lemma
2.13 and the third by Definition 3.18(1).

3. Operation S′ is defined on the set of pairs ((m, (X, r)) ∈ Õb
′
, (n, Y) ∈ Ob) such that (n, Y) >

∂(mb!(m, (X, r))). Since ∂(mb!(m, (X, r))) = (m+ 1, X) we obtained the required domain of
definition. The operation itself is given by

S′((m, (X, r)), (n, Y)) = (mb!((m, (X, r))))∗((n, Y)) =

(ft((m+ 1, X)), ((m+ 1, X), (xm0 , . . . , x
m
m−1, r)))

∗((n, Y)) =

(ft((m+ 1, X)), ((m+ 1, X), (xm0 , . . . , x
m
m−1, r)))

∗((n, Y), i)

where i = n−m− 1. By Lemma 4.9 we can extend this equality as follows:

(n− 1, (X0, . . . , Xm−1, rr(Ym+1), qq(rr)(Ym+2), . . . , qqn−m−2(rr)(Yn−1))) =

(n− 1, (Y0), . . . , Ym−1, rr(Ym+1), qq(rr)(Ym+2), . . . , qqn−m−2(rr)(Yn−1)))

where rr = (xm0 , . . . , x
m
m−1, r) and the second equality holds by our assumption on X and Y .

The required formula follows from the equality

qqj(rr)(Ym+j+1) = σLM(r, Ym+j+1)

4. Operation S̃′ is defined on the set of pairs (m, (X, r)) ∈ Õb
′
, (n, (Y , s)) ∈ Õb

′
such that

∂(mb!((n, (Y , s)))) > ∂(mb!(m, (X, r)))

which is equivalent to
(n+ 1, Y) > (m+ 1, X)

which is, in turn, equivalent to the conditions in the theorem. The operation itself is given
by:

S̃′((m, (X, r)), (n, (Y , s))) = mb((mb!(m, (X, r)))∗(mb!((n, (Y , s))))) =

mb((ft((m+ 1, X)), ((m+ 1, X), rr))∗((ft(n+ 1, Y), ((n+ 1, Y), ss))))

36

where
rr = (xm0 , . . . , x

n
m−1, r)

ss = (xn0 , . . . , x
n
n−1, s)

By Lemma 4.20 we can extend this equality as follows:

mb((ft((m+ 1, X)), ((m+ 1, X), rr))∗((ft(n+ 1, Y), ((n+ 1, Y), ss)))) =

mb(((mb!(m, (X, r)))∗(ft(Γ)), ((mb!(m, (X, r)))∗(Γ), (xn−1
0 , . . . , xn−1

n−2, (qq
n−m−1(rr))(s))))) =

(n− 1, ((mb!(m, (X, r)))∗(Γ), (qqn−m−1(rr))(s))) =

(n− 1, (S′((m, (X, r)), (n+ 1, Y))), σR(r, s))

where Γ′ = ft(m,X), Γ = (n + 1, Y), the first equality is by Lemma 2015.09.03.l1 and the
third equality by Definition Definition 3.18(3).

5. Operation δ′ is defined on the subset (m,X) ∈ Ob such that n > 0 and is given by

δ′((m,X)) = mb(δ((m,X)))

Therefore it is sufficient to show that

δ((m,X)) = (((n,X), p∗(m,X)((m,X))), (xm0 , . . . , x
m
m−1, x

m
m−1))

By Definition 3.18(5), δ((m,X)) is a morphism from (m,X) to p∗(m,X)((m,X)). Therefore,
since Fl is a fully faithful functor it is sufficient to show that

Fl(δ((m,X))) = ((m̂, m̂+ 1), (xm0 , . . . , x
m
m−1, x

m
m−1))

which follows from Lemma 4.19(5) and Lemma 3.15.

Remark 4.25 [2015.09.07.rem5] As we did in Remark 3.20 for R so we can do for LM , repre-
senting the category of pairs (R,LM), which is equivalent to the full subcategory of finitary objects
in the Hirschowitz-Maggesi category for Sets, as follows.????????

Remark 4.26 [2015.09.13.rem1] Given an l-algebraic theory lR = (lR, l, η, ∂, σ) we can define
a left l-module lLM over R as a quadruple:

1. a set lLM ,

2. a function lLM : lLM → N,

3. a function ∂LM : {E ∈ lLM, i ∈ N | lLM(E) ≥ i} → lLM ,

4. a function
σLM : {r ∈ lR,E ∈ lLM | lLM(E) > lR(r)} → lLM

where operations lLM, ∂LM and σLM satisfy some conditions.

Once these conditions are properly established the category of such pairs (lR, lLM) should be
equivalent to the Hirschowitz-Maggesi category and in particular the systems of expressions as-
sociated with binding signatures can be described as universal objects carrying some additional
operations in this category.

Let us emphasize again that the main reason to consider these l-versions of the main constructions
of this paper is that they should be easier to formalize in systems without dependent types such as
HOL or ZF. ??????

37

5 C-subsystems of CC(R,LM).

Let CC be a C-subsystem of CC(R,LM). Then, obviously, Ob(CC) ⊂ Ob(CC(R,LM)) and

Õb(CC) ⊂ Õb(CC(R,LM)). It was proved in [?, Lemma 4.1] that the function

CC 7→ (Ob(CC) ⊂ Ob(CC(R,LM)), Õb(CC) ⊂ Õb(CC(R,LM))

is an injection from the set of C-subsystems of CC(R,LM) to the set of pairs of subsets in

Ob(CC(R,LM)) and Õb(CC(R,LM)) and in [?, Proposition 4.3] that its image consists of those
pairs of subsets (B, B̃) that satisfy the following conditions:

1. pt ∈ B

2. if X ∈ B then ft(X) is in B,

3. if r ∈ B̃ then ∂(r) ∈ B̃,

4. if X ∈ B, s ∈ B̃ and (X, s) ∈ T̃dom then T̃ (X, s) ∈ B̃,

5. if r, s ∈ B̃ and (r, s) ∈ S̃dom then S̃(r, s) ∈ B̃,

6. if X ∈ B and X ∈ δdom then δ(X) ∈ B̃.

Clearly the same result holds for subsets B ⊂ Ob(CC(R,LM)) and B̃′ ⊂ Õb
′

if we replace ∂ by ∂′

(where ∂′(m, (X, r)) = X), T̃ by T̃ ′ and S̃ by S̃′.

Let us combine this result with the explicit description of the operations T̃ ′ and S̃′ obtained in
Theorem 4.24 and the following notation:

1. for (m,X) in Ob(CC(R,LM)) we write (XBB) if (m,X) ∈ B, when no confusion is possible
we will omit the superscript BB from B,

2. for (m, (X, r)) in Õb
′
(R,LM) we write (X BB̃′ r : Xm) if (m, ((X,Xm), r)) is in B̃′, similarly

to what was said above, if no confusion is possible we will omit the superscript B̃′ from B.

Remark 5.1 [2015.09.17.rem1] Those who are used to the turnstile notations (X0, . . . , Xm−1 `
r : Xm) for the statement that “the judgement that r is an object of type Xm in the context
(X0, . . . , Xm−1) is valid”, should only replace ` with B and sometimes add B or B̃′ as a superscript.
The reason for the replacement of the familiar ` with the unfamiliar B is that ` carries a meaning
in logic that does not always agree with its use in type theory. For example, in logic, Γ ` reads as
“Γ implies the empty set set of conclusions” which always holds while the type theoretic meaning
is that Γ is a well-formed context of the type theory under considerations which is a non-trivial
condition on Γ. In a subsequent paper we will consider the case when the sets B and B̃′ are the sets
of derivable judgements relative to a set of inference rules with both the concept of an inference
rule and that of the derivability being precisely defined in the mathematical terms. So far, B and

B̃′ may refer to any subsets on Ob and Õb
′

respectively.

Another group of notations that we would like to introduce is as follows. Recall that our use of
sequences such as (X0, . . . , Xm−1) is a notational convention and that the object underlying this
notation is a dependent function with the domain stn(m) and the codomain function i 7→ R(i). In
what follows we will use more such notations explained below:

38

1. Given a dependent function on stn(m), X = (X0, . . . , Xm−1) where Xi ∈ LM (̂i) and a
dependent function X ′ on {j ∈ N | j ≥ m, j < n}, X ′ = (X ′m, . . . , X

′
n−1) where X ′j ∈ LM(ĵ)

we will write (X,X ′) for the dependent function of the obvious form on stn(n),

2. Given X ′ = (X ′m, . . . , X
′
m+j) where X ′i ∈ LM (̂i) and k ≤ m we define

∂k(X ′) = (∂km(X ′m), . . . , ∂km+j(X
′
m+j)).

3. Given X ′ = (X ′m, . . . , X
′
m+j) where X ′i ∈ LM (̂i) and r ∈ R(j) where j < m we define

σLM(r,X ′) = (σLM(r,X ′m), . . . , σLM(r,X ′m+j)).

In this notation the description of the operations T, T̃ , S, S̃ and δ given in Theorem 4.24 takes the
form:

1. T ((X,XmB), (X,X ′B)) = (X,Xm, ∂
m(X ′)B) where m = l(X),

2. T̃ ((X,XmB), (X,X ′ B s : Yn)) = (X,Xm, ∂
m(X ′) B ∂m(s) : ∂m(Yn)) where m = l(X),

3. S((X B r : Xm), (X,Xm, X
′B)) = (X,σLM(r,X ′)B),

4. S̃((X B r : Xm), (X,Xm, X
′ B s : Yn)) = (X,σLM(r,X ′) B σLM(r, s) : σLM(r, Yn)),

5. δ(X,XmB) = (X,Xm B xm+1
m : ∂mm(Xm)) where m = l(X).

Remark 5.2 [2015.09.17.rem2] Note that ∂mm = ι1m and therefore ∂mm(Xm) is “the same” expres-
sion Xm but considered as an expression in variables x0, . . . , xm.

The following result is an immediate corollary of [?, Proposition 4.3] together with the description
of the operations T, T̃ , S, S̃ and δ for CC(R,LM) which is given above.

Proposition 5.3 [2009.10.16.prop3] Let (R,LM) be as above. Let (B, B̃′) be a pair of subsets

in Ob(CC(R,LM)) and Õb
′
(R,LM) respectively. Then the following two conditions are equivalent:

1. There exists a C-subsystem CC of CC(R,LM) such that Ob(CC) = B and mbR,LM(Õb(CC)) =

B̃′ as subsets in Ob(CC(R,LM)) and Õb(CC(R,LM)) respectively.

2. The following conditions hold:

(a) (B)

(b) (X,XmB)⇒ (XB)

(c) (X B r : Xm)⇒ (X,XmB)

(d) (X,XmB) ∧ (X,X ′,Bs : Yn)⇒ (X,Xm, ∂
m(X ′) B ∂m(s) : ∂m(Yn)) where m = lf (X)

(e) (X B r : Xm) ∧ (X,Xm, X
′ B s : Yn)⇒ (X,σLM(r,X ′) B σLM(r, s) : σLM(r, Yn)) ,

(f) (X,XmB)⇒ (X,Xm B xm+1
m : ∂mm(Xm)) where m = lf (X).

In addition if a C-subsystem CC satisfying the conditions of the proposition exists then it is unique.

39

Note that condition (d) together with condition (f) and condition (c) imply the following

d’ (X,XmB) ∧ (X,X ′B) ⇒ (X,Xm, ∂
m(X ′)B) where m = lf (X), and the condition (e) together

with conditions (f) and (c) imply the following

e’ (X B r : Xm) ∧ (X,Xm, X
′B)⇒ (X,σLM(r,X ′)B).

Remark 5.4 [2010.08.07.rem1] If one re-writes the conditions of Proposition 5.3 in the more
familiar in type theory form where the variables introduced in the context are named rather than
directly numbered and where the numbering is not from 0 but from 1 one arrives at the following
rules:

B
x1 : T1, . . . , xn : TnB

x1 : T1, . . . , xn−1 : Tn−1B
x1 : T1, . . . , xn : Tn B t : T

x1 : T1, . . . , xn : Tn, y : TB

x1 : T1, . . . , xn : Tn, y : T B x1 : T1, . . . , xn : Tn, . . . , xm : Tm B r : R

x1 : T1, . . . , xn : Tn, y : T, xn+1 : Tn+1, . . . , xm : Tm B r : R

x1 : T1, . . . , xn : Tn B s : S x1 : T1, . . . , xn : Tn, y : S, xn+1 : Tn+1, . . . , xm : Tm B r : R

x1 : T1, . . . , xn : Tn, xn+1 : Tn+1[s/y], . . . , xm : Tm[s/y] B (r : R)[s/y]

x1 : E1, . . . , xn : EnB
x1 : E1, . . . , xn : En B xn : En

which are similar (and probably equivalent) to the “basic rules of DTT” given in [?, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
sufficient for a given collection of contexts and judgements to define a C-subsystem.

The following lemma is needed in order to show that the pre-category that we obtain from (B, B̃′)

using our construction of a sub-C-system from a pair of subsets in Ob and Õb
′

satisfying certain
conditions has the same morphisms as the pre-category whose construction from such subsets is
outlined in more traditional texts such as [?]. The fact that one obtains the same composition is
more difficult to prove since I do not know of any traditional texts where the composition would
be described in sufficient detail.

Lemma 5.5 [2009.11.05.l1] Let (B, B̃′) be a pair of subsets satisfying the conditions of Propo-
sition 5.3 and let CC be the corresponding C-subsystem of CC(R,LM). Let (m,X), (n, Y) ∈ B
and

f = (((m,X), (n, Y)), (f0, . . . , fn−1)) ∈ HomCC(R,LM)((m,X), (n, Y))

Then f ∈ HomCC((m,X), (n, Y)) if an only if

f ◦ p(n,Y) ∈ HomCC((m,X), ft((n, Y)))

and
[2015.09.09.eq4](X0, . . . , Xm−1 B

B̃′ fn−1 : (f0, . . . , fn−2)(Yn−1)) (37)

40

Proof: The expression (37) is our notation for the statement that

(m, ((X0, . . . , Xm−1, (f0, . . . , fn−2)(Yn−1)), fn−1)) ∈ B̃′

By Lemma 4.23 this is equivalent to the condition that sf ∈ B̃ where B̃ = mb!R,LM(B̃′). By

definition of CC we have B̃ = Õb(CC).

By [?, Definition 2.3(3)] we have

f = sf ◦ q(f ◦ p(n,Y), (n, Y))

therefore if sf ∈Mor(CC) and f◦p(n,Y) ∈Mor(CC) then f ∈Mor(CC) since CC is a C-subsystem
of CC(R,LM). This proves the ”if” part of the Lemma.

The ”only if” part follows similarly from the assumption that CC is a C-subsystem and therefore
both f ◦ p(n,Y) and sf belong to Mor(CC).

6 Regular sub-quotients of CC(R,LM).

The type systems of Martin-Löf genus are usually characterized by four rather than by two sets of
“sentences”.

There is a set of sentences of the form (X0, . . . , Xm−1, Xm), where Xi ∈ LM(i), whose elements
are usually written as X0, . . . , Xm−1 ` Xm type and whose meaning is that Xm is a valid type
expression in a valid context X0, . . . , Xm−1 or, equivalently, that (X0, . . . , Xm−1, Xm) is a valid
context. This is our set B.

There is a set of sentences of the form (X0, . . . , Xm−1, Xm, r) whose elements are usually written
as X0, . . . , Xm−1 ` r : Xm and whose meaning is that r is a valid expression for an element of a
valid type Xm in a valid context X0, . . . , Xm−1. This is our set B̃.

The other two sets represent “definitional equality judgements”.

There is a set of sequences of the form (X0, . . . , Xm−1, Xm, X
′
m) whose elements are usually written

as X0, . . . , Xm−1 ` Xm = X ′m and whose meaning is that Xm and X ′m are valid type expressions
in the valid context (X0, . . . , Xm−1) and that in this context they are definitionally equal.

There is also a set of sequences of the form (X0, . . . , Xm−1, Xm, r, r
′) whose elements are usually

written (X0, . . . , Xm−1 ` r = r′ : Xm) and whose meaning is that r and r′ are valid expressions for
elements of a valid type Xm in a valid context (X0, . . . , Xm−1) that are definitionally equal.

We have shown how to construct from any two sets the form B and B̃′, which satisfy certain
conditions, a C-subsystem CC(B, B̃′) of CC(R,LM). We are now going to show how to construct

from four sets B, B̃′, Beq and B̃eq a quotient of CC(B, B̃′).

This completes the mathematically rigorous construction of the “term model” of a type theory
in the form of C-system starting from four sets of “judgements” of the form introduced by Per
Martin-Löf.

Consider two subsets
Beq ⊂

∐
n∈N

Obn(R,LM)× (LM(n̂)× LM(n̂))

B̃eq ⊂
∐
n∈N

Obn(R,LM)× (LM(n̂)× (R(n)×R(n)))

41

We are going to describe how such a pair of subsets defines a pair of relations on B and B̃ and
what conditions the pair of subsets has to satisfy in order for this pair of relations to satisfy the
conditions of [?, Propositions 5.4] and, therefore, to correspond to a regular congruence relation on
CC(B, B̃′).

Not all regular congruence relations on CC(B, B̃′) arise from such pairs of subsets. A partial answer
to the question of what are the additional conditions on a congruence relation to be define by a
pair of subsets of the form Beq, B̃eq will be given in the next section.

For X ∈ Obn(R,LM) and S1, S2 ∈ LM(n̂) we write (XBBeqS1 = S2) to signify that (X, (S1, S2)) ∈
Beq. Similarly for S ∈ LM(n̂) and o, o′ ∈ R(n) we write (X BB̃eq o = o′ : S) to signify that

(X, (S, (o, o′))) ∈ B̃eq. When no confusion is possible we will omit the superscripts Beq and B̃eq
at B.

Definition 6.1 [simandsimeq] Given subsets B, B̃′, Beq, B̃eq as above define relations ∼ on B
and '′ on B̃′ as follows:

1. for Γ = (m,X), Γ′ = (m′, X ′) in B we set Γ ∼ Γ′ iff m = m′, ft(Γ) ∼ ft(Γ′) and

(X0, . . . , Xm−2 BXm−1 = X ′m−1)

2. for (XBr : Xm), (X ′Br′ : X ′m) in B̃′ where l(X) = l(X ′) we set (XBr : Xm) '′ (X ′Br′ : X ′m)
iff (X,XmB) ∼ (X ′, X ′mB) and

(X B r = r′ : Xm).

Define the relation ' on B̃ = mb!R,LM(B̃′) by the formula

(f ' f ′)⇔ (mbR,LM(f) '′ mbR,LM(f ′))

The proof of the following lemma is omitted because of its simplicity.

Lemma 6.2 [2015.09.11.l1] Let ∼ and '′ be relations on B and B̃′ respectively. Let ' be the
relation on B̃ defined by the formula

(f ' f ′)⇔ (mbR,LM(f) '′ mbR,LM(f ′))

Then ∼ and ' satisfy the conditions of [?, Proposition 5.4] if and only if the following holds:

1. ∼ and '′ are compatible with operations ft, ∂′, T ′, T̃ ′, S′, S̃′ and δ′,

2. (m,X) ∼ (n, Y) implies m = n,

3. for any (m,X), (m − 1, F) in B such that ft(m,X) ∼ (m − 1, F) there exists (m,X ′) in B
such that (m,X) ∼ (m,X ′) and ft(m,X ′) = (m− 1, F),

4. for any (m, (X, r)) ∈ B̃′ and (m+ 1, X ′) ∼ (m+ 1, X) in B there exists r′ ∈ R(m) such that
(m, (X ′, r′)) '′ (m, (X, r)) in B̃′.

Proposition 6.3 [2014.07.10.prop1] Let B, B̃′, Beq, B̃eq be as above and suppose in addition
that one has:

42

1. B and B̃′ satisfy conditions (a)-(f) of Proposition 5.3 which are referred to below as conditions
(1a)-(1f) of the present proposition,

2. let m = l(X) then

(a) (X BXm = X ′m) ⇒ (X,XmB)

(b) (X,XmB) ⇒ (X BXm = Xm)

(c) (X BXm = X ′m) ⇒ (X BX ′m = Xm)

(d) (X BXm = X ′m) ∧ (X BX ′m = X ′′m) ⇒ (X BXm = X ′′m)

3. let m = l(X) then

(a) (X B r = r′ : Xm) ⇒ (X B r : Xm)

(b) (X B r : Xm) ⇒ (X B r = r : Xm)

(c) (X B r = r′ : Xm) ⇒ (X B r′ = r : Xm)

(d) (X B r = r′ : Xm) ∧ (X B r′ = r′′ : Xm) ⇒ (X B r = r′′ : Xm)

4. let m = l(X) then

(a) (X BXm = X ′m) ∧ (X,Xm, Y B S = S′) ⇒ (X,X ′m, Y B S = S′)

(b) (X BXm = X ′m) ∧ (X,Xm, Y B o = o′ : S) ⇒ (X,X ′m, Y
′ B o = o′ : S)

(c) (X B S = S′) ∧ (X B o = o′ : S) ⇒ (X B o = o′ : S′)

5. let m = l(X) then

(a) (X,XmB) ∧ (X,Y B S = S′) ⇒ (X,Xm, ∂
m(Y) B ∂m(S) = ∂m(S′))

(b) (X,XmB) ∧ (X,Y B o = o′ : S) ⇒ (X,Xm, ∂
m(Y) B ∂m(o) = ∂m(o′) : ∂m(S))

6. let m = l(X) then

(a) (X,Xm, Y B S = S′) ∧ (X B r : Xm) ⇒ (X,σ(r, Y) B σ(r, S) = σ(r, S′))

(b) (X,Xm, Y B o = o′ : S) ∧ (X B r : Xm) ⇒ (X,σ(r, Y) B σ(r, o) = σ(r, o′) : σ(r, S))

7. let m = l(X) then

(a) (X,Xm, Y , SB) ∧ (X B r = r′ : Xm) ⇒ (X,σ(r, Y) B σ(r, S) = σ(r′, S))

(b) (X,Xm, Y B o : S) ∧ (X B r = r′ : Xm) ⇒ (X,σ(r, Y) B σ(r, o) = σ(r′, o) : σ(r, S))

43

Then the relations ∼ and '′ are equivalence relations on B and B̃′ which satisfy the conditions of
Lemma 6.2 and therefore correspond to a regular congruence relation on CC(B, B̃).

Remark 6.4 [2015.09.13.rem1] As was pointed out by Richard Garner in a private communica-
tion in June 2014 the conditions (4a), (4b) of Proposition 6.3 can be derived from other conditions
of the same proposition as follows.

We do it on the example of conditions (4a). Suppose that we are given that X BXm = X ′m and
X,Xm, Y B S = S′. We want to obtain X,X ′m, Y B S = S′.

We start by obtaining by (2c) and (2a) that (X,X ′mB).

Then by (5a) we obtain that X,X ′m, ∂
m(Xm, Y) B ∂m(S) = ∂m(S′).

On the other hand by (1f) we have X,X ′m B xm+1
m : ∂m(X ′m).

Then by (3b) we obtain

[2015.09.18.eq1]X,X ′m B xm+1
m = xm+1

m : ∂m(X ′m) (38)

By (2c) we obtain from (X BXm = X ′m) that (X BX ′m = Xm). Then by (5a) we obtain that

[2015.09.18.eq2]X,X ′m B ∂m(X ′m) = ∂m(Xm) (39)

Then by (4c) we obtain from (38) and (39) that

[2015.09.18.eq3]X,X ′m B xm+1
m = xm+1

m : ∂m(Xm) (40)

Then by (3a) we obtain that

[2015.09.18.eq4]X,X ′m B xm+1
m : ∂m(Xm) (41)

Then applying (6a) to X,X ′m, ∂
m(Xm), ∂m(Y) B ∂m(S) = ∂m(S′) and (41) we obtain

X,X ′m, σ(xm+1
m , ∂m(Y)) B σ(xm+1

m , ∂m(S)) = σ(xm+1
m , ∂m(S′))

It remains to check that for j ≥ m+ 1 and Z ∈ LM(ĵ) one has

σ(xm+1
m , ∂m(Z)) = Z

By definition of σ = σLM given in (28) we have:

σ(xm+1
m , ∂m(Z)) = @σ(m+ 1, xm+1

m , j + 1, ∂m(Z)) =

(xj0, . . . , x
j
m, ι

j−m−1
m+1 (xm+1

m), xjm+1, . . . , x
j
j−1)(∂m(Z)) =

(xj0, . . . , x
j
m, x

j
m, x

j
m+1, . . . , x

j
j−1)(∂m(Z)) = σmj−1(∂mj (Z)) = (φR(∂mj ◦ σmj−1))(Z) = Z

Lemma 6.5 [iseqrelsiml1] One has:

1. If conditions (1.2), (4a) of the proposition hold then (X BS = S′)∧ (X ∼ Y)⇒(Y BS = S′).

2. If conditions (1.2), (1.3), (4a), (4b), (4c) hold then (XBo = o′ : S)∧((X,S) ∼ (Y , S′))⇒(Y B
o = o′ : S′).

44

Proof: By induction on m = l(X) = l(Y).

(1) For m = 0 the assertion is obvious. Therefore by induction we may assume that (XBS = S′)∧
(X ∼ Y)⇒(Y BS = S′) for all i < m and all appropriate X,Y , S and S′ and that (X0, . . . , Xm−1B
S = S′) ∧ (X0, . . . , Xm−1 ∼ Y0, . . . , Ym−1) holds and we need to show that (Y0, . . . , Ym−1 B S =
S′) holds. Let us show by induction on j that (Y0, . . . , Yj−1, Xj , . . . , Xm−1 B S = S′) for all
j = 0, . . . ,m − 1. For j = 0 it is a part of our assumptions. By induction we may assume that
(Y0, . . . , Yj−1, Xj , . . . , Xm−1BS = S′). By definition of ∼ we have (X0, . . . , Xj−1BXj = Yj). By the
inductive assumption we have (Y0, . . . , Yj−1 BXj = Yj). Applying (4a) for (Y0, . . . Yj−1 BXj = Yj
and Y0, . . . Yj−1, Xj , Xj+1, . . . , Xm−1 B S = S′ we conclude that (Y0, . . . , Yj , Xj+1, . . . , Xm−1 B S =
S′).

(2) By the first part of the lemma we have Y B S = S′. Therefore by (4c) it is sufficient to show
that (X B o = o′ : S) ∧ (X ∼ Y)⇒(Y B o = o′ : S). The proof of this fact is similar to the proof of
the first part of the lemma using (4b) instead of (4a).

Lemma 6.6 [iseqrelsim] One has:

1. Assume that conditions (1.2), (2b), (2c), (2d) and (4a) hold. Then ∼ is an equivalence
relation.

2. Assume that conditions of the previous part of the lemma as well as conditions (1.3), (3b),
(3c), (3d), (4b) and (4c) hold. Then '′ is an equivalence relation.

Proof: By induction on m = lf (Γ) = l(Y).

(1) Reflexivity follows directly from (1.2) and (2b). For m = 0 the symmetry is obvious. Let
(X,Xm) ∼ (Y , Ym). By induction we may assume that Y ∼ X. By Lemma 6.5(a) we have
(Y BXm = Ym) and by (2c) we have (Y B Ym = Xm). We conclude that (Y , Ym) ∼ (X,Xm). The
proof of transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of ∼, (1.3) and (3b). Symmetry and transitivity are
also easy using Lemma 6.5.

From this point on we assume that all conditions of Proposition 6.3 hold. Let BB = B/ ∼ and

B̃B
′

= B̃′/ '′. It follows immediately from our definitions that the functions ft : B → B and

∂′ : B̃′ → B define functions BB → BB and B̃B
′
→ B̃B

′
that we will also write as ft and ∂′.

Lemma 6.7 [surjl1] The conditions (3) and (4) of Lemma 6.2 hold for ∼ and '′.

Proof: 1. We need to show that for (X,XmB), and X ∼ Y there exists (Y , YmB) such that
(X,Xm) ∼ (Y , Ym). It is sufficient to take Ym = Xm. Indeed by (2b) we have X BXm = Xm, by
Lemma 6.5(1) we conclude that Y BXm = Xm and by (1a) that Y ,XmB.

2. We need to show that for (X B r : Xm) and (X,Xm) ∼ (Y , Ym) there exists (Y B r′ : Ym)
such that (Y B r′ : Ym) '′ (X B r : Xm). It is sufficient to take r′ = r. Indeed, by (3b) we have
(XBr = r : Xm), by Lemma 6.5(2) we conclude that (Y Br = r : Ym) and by (2a) that (Y Br : Ym).

Lemma 6.8 [TSetc] The equivalence relations ∼ and '′ are compatible with the operations T ′, T̃ ′, S′, S̃′

and δ′.

45

Proof: (1) Given (X,XmB) ∼ (X ′, X ′mB) and (X,YB) ∼ (X ′, Y ′B) we have to show that

(X,Xm, ∂
m(Y)) ∼ (X ′, X ′m, ∂

m(Y ′)).

where m = l(X) = l(X ′).

Proceed by induction on n = l(Y). For l(Y) = 0 the assertion is obvious. Let (X,XmB) ∼
(X ′, X ′mB) and (X,Y , SB) ∼ (X ′, Y ′, S′B). The latter condition is equivalent to (X,YB) ∼
(X ′, Y ′B) and (X,YBS = S′). By the inductive assumption we have (X,Xm, ∂

m(Y)) ∼ (X ′, X ′m, ∂
m(Y ′)).

By (5a) we conclude that (X,Xm, ∂
m(Y)B∂m(S) = ∂m(S′)). Therefore by definition of ∼ we have

(X,Xm, ∂
m(Y), ∂m(S)) ∼ (X ′, X ′m, ∂

m(Y ′), ∂m(S′)).

(2) Given (X,XmB) ∼ (X ′, X ′mB) and (X,Y B o : S) '′ (X ′, Y ′ B o′ : S′) we have to show that
(X,Xm, ∂

m(Y) B ∂m(o) : ∂m(S)) '′ (X ′, X ′m, ∂
m(Y ′) B ∂m(o′) : ∂m(S′)) where m = l(X) = l(X ′).

We have (X,Y , S) ∼ (X ′, Y ′, S′) and (X,Y Bo = o′ : S). By (5b) we get (X,Xm, ∂
m(Y)B∂m(o) =

∂m(o′) : ∂m(S)). By (1) of this lemma we get (X,Xm, ∂
m(Y), ∂m(S)) ∼ (X ′, X ′m, ∂

m(Y ′), ∂m(S′))
and therefore by definition of '′ we get (X,Xm, ∂

m(Y) B ∂m(o) : ∂m(S)) '′ (X ′, X ′m, ∂
m(Y ′) B

∂m(o′) : ∂m(S′)).

(3) Given (X B r : Xm) '′ (X ′B r′ : X ′m) and (X,Xm, YB) ∼ (X ′, X ′m, Y
′B) we have to show that

(X,σ(r, Y)) ∼ (X ′, σ(r, Y ′)).

where m = l(X) = l(X ′). Proceed by induction on l(Y). For l(Y) = 0 the assertion follows directly
from the definitions. Let (X B r : Xm) '′ (X ′ B r′ : X ′m) and (X,Xm, Y , SB) ∼ (X ′, X ′m, Y

′, S′B).
The later condition is equivalent to (X,Xm, YB) ∼ (X ′, X ′m, Y

′B) and (X,Xm, Y B S = S′). By
the inductive assumption we have (X,σ(r, Y) ∼ (X ′, σ(r, Y ′). It remains to show that (X,σ(r, Y)B
σ(r, S) = σ(r, S′). By (2d) it is sufficient to show that (X,σ(r, Y) B σ(r, S) = σ(r, S′) and
(X,σ(r, Y) B σ(r, S′) = σ(r′, S′). The first relation follows directly from (6a). To prove the
second one it is sufficient by (7a) to show that (X,Xm, Y , S

′B) which follows from our assumption
through (2c) and (2a).

(4) Given (X B r : Xm) '′ (X ′ B r′ : X ′m) and (X,Xm, Y B o : S) '′ (X ′, X ′m, Y ′ B o′ : S′) we have
to show that

(X,σ(r, Y) B σ(r, o) : σ(r, S)) '′

(X ′, σ(r′, Y ′) B σ(r′, o′) : σ(r′, S′)).

where m = l(X) = l(X ′) or equivalently that

(X,σ(r, Y), σ(r, S)) ∼ (X ′, σ(r′Y ′), σ(r′, S′))

and (X,σ(r, Y) B σ(r, o) = σ(r′, o′) : σ(r, S)). The first statement follows from part (3) of the
lemma. To prove the second statement it is sufficient by (3d) to show that (X,σ(r, Y) B σ(r, o) =
σ(r, o′) : σ(r, S)) and (X,σ(r, Y) B σ(r, o′) = σ(r′, o′) : σ(r, S)). The first assertion follows directly
from (6b). To prove the second one it is sufficient in view of (7b) to show that (X,Xm, Y B o′ : S)
which follows conditions (3c) and (3a).

(5) Given (X,Xm) ∼ (X ′, X ′m) we need to show that (X,XmBxm+1
m : ∂m(Xm)) '′ (X ′, X ′mBxm+1

m :
∂m(X ′m)) or equivalently that (X,Xm, ∂

m(Xm)) ∼ (X,X ′m, ∂
m(X ′m)) and (X,XmBxm+1

m = xm+1
m :

∂m(Xm)). The second part follows from (3b). To prove the first part we need to show that
(X,Xm B ∂m(Xm) = ∂m(X ′m)). This follows from our assumption by (5a).

46

7 Operations σ and σ̃.

In the previous section we described an important class of regular congruence relations on C-
subsystems of the C-systems of the form CC(R,LM) in terms of pairs of subsets of the form Beq,

B̃eq.

C-systems of the form CC(R,LM) have an important additional structure. This structure is given
by two operations:

1. For (m,X), (n, Y) wherem ≥ n we define σ((m,X), (n, Y)) as the object given in the sequence
notation by

σ((m,X), (n, Y)) = (Y0, . . . , Yn−1, Xn, . . . , Xm−1)

This gives us an operation with values in Ob defined on the subset of Ob×Ob which consists
of pairs (Γ,Γ′) such that lf (Γ) ≥ lf (Γ′). Note that for m = n one has

σ((m,X), (n, Y)) = (n, Y)

2. for (m, (X, r)) in Õb
′

and (n, Y) ∈ Ob such that m + 1 ≥ n define σ̃((m, (X, r)), (n, Y)) as
follows:

σ̃((m, (X, r)), (n, Y)) = (m, (σ((m+ 1, X), (n, Y)), r))

This gives us an operation with values in Õb
′
defined on the subset of Õb

′
×Ob which consists

of pairs (r,Γ′) such that lf (∂(r)) ≤ lf (Γ′).

Remark 7.1 [2015.09.27.rem1] Both operations can be easily re-written using Õb instead of Õb
′

but it is unclear how to define such operations on general C-systems or what is the natural class of
C-systems on which such operations can be defined.

Lemma 7.2 [2014.07.12.l1] Let B be a subset of Ob(CC(R,LM)) which is closed under ft. Let
∼ be a transitive relation on B such that:

1. Γ ∼ Γ′ implies lf (Γ) = lf (Γ′),

2. Γ ∈ B and ft(Γ) ∼ F implies σ(Γ, F) ∈ B and Γ ∼ σ(Γ, F).

Then Γ ∈ B and fti(Γ) ∼ F for some i ≥ 1, implies that σ(Γ, F) ∈ B and Γ ∼ σ(Γ, F).

Proof: Simple induction on i.

Lemma 7.3 [2014.07.12.l2] Let B and ∼ be as in Lemma 7.2. Then one has:

1. (Γ, T) ∼ (Γ, T ′) and Γ ∼ Γ′ implies that (Γ, T) ∼ (Γ′, T ′),

2. if ∼ is ft-monotone (i.e. Γ ∼ Γ′ implies ft(Γ) ∼ ft(Γ′)) and symmetric then (Γ, T) ∼ (Γ′, T ′)
implies that (Γ, T) ∼ (Γ, T ′).

47

Proof: The first assertion follows from

(Γ, T) ∼ (Γ, T ′) ∼ σ((Γ, T ′),Γ′) = (Γ′, T ′)

The second assertion follows from

(Γ, T) ∼ (Γ′, T ′) ∼ σ((Γ′, T ′),Γ) = (Γ, T ′)

where the second ∼ requires Γ′ ∼ Γ which follows from ft-monotonicity and symmetry.

Lemma 7.4 [2014.07.12.l3] Let B,∼ be as in Lemma 7.2, let B̃ be a subset of Õb(CC(R,LM))
and '′ a transitive relation on B̃ such that:

1. J '′ J ′ implies ∂(J) ∼ ∂(J ′),

2. J ∈ B̃ and ∂(J) ∼ F implies σ̃(J , F) ∈ B̃ and J '′ σ̃(J , F).

Then J ∈ B̃ and fti(∂(J)) ∼ F for some i ∈ N implies J ∼ σ̃(J , F).

Proof: Simple induction on i.

Lemma 7.5 [2014.07.12.l4] Let B,∼ and B̃,'′ be as in Lemma 7.4. Then one has:

1. (Γ B o : T) '′ (Γ B o′ : T) and (Γ, T) ∼ (Γ′, T ′) implies that (Γ B o : T) '′ (Γ′ B o′ : T ′),

2. if (∼,'′) is ∂-monotone (i.e. J '′ J ′ implies ∂(J) ∼ ∂(J ′)) and ∼ is symmetric then
(Γ B o : T) '′ (Γ′ B o′ : T ′) implies that (Γ B o : T) '′ (Γ B o′ : T).

Proof: The first assertion follows from

(Γ B o : T) '′ (Γ B o′ : T) '′ σ̃((Γ B o′ : T), (Γ′, T ′)) = (Γ′ B o′ : T ′)

The second assertion follows from

(Γ B o : T) '′ (Γ′ B o′ : T ′) '′ σ((Γ′ B o′ : T ′), (Γ, T)) = (Γ B o′ : T)

where the second ∼ requires Γ′ ∼ Γ which follows from ∂-monotonicity of '′ and symmetry of ∼.

Proposition 7.6 [2014.07.10.prop2] Let (B, B̃) be subsets in Ob(CC(R,LM)) and Õb(CC(R,LM))
respectively which correspond to a C-subsystem CC of CC(R,LM). Then the constructions pre-

sented above establish a bijection between pairs of subsets (Beq, B̃eq) which together with (B, B̃)
satisfy the conditions of Proposition 6.3 and pairs of equivalence relations (∼,'′) on (B, B̃) such
that:

1. (∼,'′) corresponds to a regular congruence relation on CC (i.e., satisfies the conditions of
[?, Proposition 5.4]),

2. Γ ∈ B and ft(Γ) ∼ F implies Γ ∼ σ(Γ, F),

3. J ∈ B̃ and ∂(J) ∼ F implies J '′ σ̃(J , F).

48

Proof: One constructs a pair (∼,'′) from (Beq, B̃eq) as in Definition 6.1. This pair corresponds
to a regular congruence relation by Proposition 6.3. Conditions (2),(3) follow from Lemma 6.5.

Let (∼,'′) be equivalence relations satisfying the conditions of the proposition. Define Beq as the

set of sequences (Γ, T, T ′) such that (Γ, T), (Γ, T ′) ∈ B and (Γ, T) ∼ (Γ, T ′). Define B̃eq as the set
of sequences (Γ, T, o, o′) such that (Γ, T, o), (Γ, T, o′) ∈ B̃ and (Γ, T, o) '′ (Γ, T, o′).

Let us show that these subsets satisfy the conditions of Proposition 6.3. Conditions (2.a-2.d) and
(3.a-3d) are obvious.

Condition (4a) follows from (2) by Lemma 7.2. Conditions (4b) and (4c) follow from (3) by Lemma
7.4.

Conditions (5a) and (5b) follow from the compatibility of (∼,'′) with T and T̃ .

Conditions (6a),(6b),(7a),(7b) follow from the compatibility of (∼,'′) with S and S̃.

49

	Introduction
	Monads and strict algebraic theories
	The C-system C(R)
	The C-system CC(R,LM).
	C-subsystems of CC(R,LM).
	Regular sub-quotients of CC(R,LM).
	Operations and "0365.

